# coding=utf-8 # Copyright 2024 the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch Idefics2 model.""" from dataclasses import dataclass from typing import Callable, List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...cache_utils import Cache, DynamicCache from ...generation import GenerationMixin from ...modeling_attn_mask_utils import _prepare_4d_attention_mask from ...modeling_outputs import BaseModelOutput, ModelOutput from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel from ...utils import ( add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.deprecation import deprecate_kwarg from ..auto import AutoModel from .configuration_idefics2 import Idefics2Config, Idefics2PerceiverConfig, Idefics2VisionConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "Idefics2Config" @dataclass class Idefics2BaseModelOutputWithPast(ModelOutput): """ Base class for Idefics2 model's outputs that may also contain a past key/values (to speed up sequential decoding). Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1, hidden_size)` is output. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if `config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if `config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. image_hidden_states (`tuple(torch.FloatTensor)`, *optional*): Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images, sequence_length, hidden_size)`. image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver """ last_hidden_state: Optional[torch.FloatTensor] = None past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None @dataclass # Copied from transformers.models.idefics.modeling_idefics.IdeficsCausalLMOutputWithPast with Idefics->Idefics2 class Idefics2CausalLMOutputWithPast(ModelOutput): """ Base class for Idefics2 causal language model (or autoregressive) outputs. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss (for next-token prediction). logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. image_hidden_states (`tuple(torch.FloatTensor)`, *optional*): Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images, sequence_length, hidden_size)`. image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver """ loss: Optional[torch.FloatTensor] = None logits: Optional[torch.FloatTensor] = None past_key_values: Optional[List[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None class Idefics2VisionEmbeddings(nn.Module): """ This is a modified version of `siglip.modelign_siglip.SiglipVisionEmbeddings` to enable images of variable resolution. The modifications are adapted from [Patch n' Pack: NaViT, a Vision Transformer for any Aspect Ratio and Resolution](https://arxiv.org/abs/2307.06304) which allows treating images in their native aspect ratio and without the need to resize them to the same fixed size. In particular, we start from the original pre-trained SigLIP model (which uses images of fixed-size square images) and adapt it by training on images of variable resolutions. """ def __init__(self, config: Idefics2VisionConfig): super().__init__() self.embed_dim = config.hidden_size self.image_size = config.image_size self.patch_size = config.patch_size self.patch_embedding = nn.Conv2d( in_channels=config.num_channels, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size, padding="valid", ) self.num_patches_per_side = self.image_size // self.patch_size self.num_patches = self.num_patches_per_side**2 self.num_positions = self.num_patches self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim) def forward(self, pixel_values: torch.FloatTensor, patch_attention_mask: torch.BoolTensor) -> torch.Tensor: batch_size, _, max_im_h, max_im_w = pixel_values.shape patch_embeds = self.patch_embedding(pixel_values) embeddings = patch_embeds.flatten(2).transpose(1, 2) max_nb_patches_h, max_nb_patches_w = max_im_h // self.patch_size, max_im_w // self.patch_size boundaries = torch.arange(1 / self.num_patches_per_side, 1.0, 1 / self.num_patches_per_side) position_ids = torch.full(size=(batch_size, max_nb_patches_h * max_nb_patches_w), fill_value=0) for batch_idx, p_attn_mask in enumerate(patch_attention_mask): nb_patches_h = p_attn_mask[:, 0].sum() nb_patches_w = p_attn_mask[0].sum() fractional_coords_h = torch.arange(0, 1 - 1e-6, 1 / nb_patches_h) fractional_coords_w = torch.arange(0, 1 - 1e-6, 1 / nb_patches_w) bucket_coords_h = torch.bucketize(fractional_coords_h, boundaries, right=True) bucket_coords_w = torch.bucketize(fractional_coords_w, boundaries, right=True) pos_ids = (bucket_coords_h[:, None] * self.num_patches_per_side + bucket_coords_w).flatten() position_ids[batch_idx][p_attn_mask.view(-1).cpu()] = pos_ids position_ids = position_ids.to(self.position_embedding.weight.device) embeddings = embeddings + self.position_embedding(position_ids) return embeddings def eager_attention_forward( module: nn.Module, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: Optional[torch.Tensor], scaling: float, dropout: float = 0.0, **kwargs, ): if hasattr(module, "num_key_value_groups"): key = repeat_kv(key, module.num_key_value_groups) value = repeat_kv(value, module.num_key_value_groups) attn_weights = torch.matmul(query, key.transpose(2, 3)) * scaling if attention_mask is not None: causal_mask = attention_mask[:, :, :, : key.shape[-2]] attn_weights = attn_weights + causal_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) attn_output = torch.matmul(attn_weights, value) attn_output = attn_output.transpose(1, 2).contiguous() return attn_output, attn_weights # Copied from transformers.models.siglip.modeling_siglip.SiglipAttention with Siglip->Idefics2Vision class Idefics2VisionAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" # Copied from transformers.models.clip.modeling_clip.CLIPAttention.__init__ def __init__(self, config): super().__init__() self.config = config self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_heads})." ) self.scale = self.head_dim**-0.5 self.dropout = config.attention_dropout self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) # Ignore copy self.is_causal = False def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: """Input shape: Batch x Time x Channel""" batch_size, seq_length, embed_dim = hidden_states.shape queries = self.q_proj(hidden_states) keys = self.k_proj(hidden_states) values = self.v_proj(hidden_states) queries = queries.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2) keys = keys.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2) values = values.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": if self.config._attn_implementation == "sdpa" and output_attentions: logger.warning_once( "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to " 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) else: attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, queries, keys, values, attention_mask, is_causal=self.is_causal, scaling=self.scale, dropout=0.0 if not self.training else self.dropout, ) attn_output = attn_output.reshape(batch_size, seq_length, embed_dim).contiguous() attn_output = self.out_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights # Copied from transformers.models.siglip.modeling_siglip.SiglipMLP with Siglip->Idefics2Vision class Idefics2VisionMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.activation_fn = ACT2FN[config.hidden_act] self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states class Idefics2MLP(nn.Module): def __init__( self, hidden_size: int, intermediate_size: int, output_size: int, hidden_act: str, ): super().__init__() self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False) self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False) self.down_proj = nn.Linear(intermediate_size, output_size, bias=False) self.act_fn = ACT2FN[hidden_act] def forward(self, x): return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) # Copied from transformers.models.siglip.modeling_siglip.SiglipMultiheadAttentionPoolingHead with Siglip->Idefics2 class Idefics2MultiheadAttentionPoolingHead(nn.Module): """Multihead Attention Pooling.""" def __init__(self, config: Idefics2VisionConfig): super().__init__() self.probe = nn.Parameter(torch.randn(1, 1, config.hidden_size)) self.attention = torch.nn.MultiheadAttention(config.hidden_size, config.num_attention_heads, batch_first=True) self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) # Ignore copy self.mlp = Idefics2MLP( hidden_size=config.hidden_size, intermediate_size=config.intermediate_size, hidden_act=config.hidden_act, output_size=config.hidden_size, ) def forward(self, hidden_state): batch_size = hidden_state.shape[0] probe = self.probe.repeat(batch_size, 1, 1) hidden_state = self.attention(probe, hidden_state, hidden_state)[0] residual = hidden_state hidden_state = self.layernorm(hidden_state) hidden_state = residual + self.mlp(hidden_state) return hidden_state[:, 0] class Idefics2EncoderLayer(nn.Module): def __init__(self, config: Idefics2VisionConfig): super().__init__() self.embed_dim = config.hidden_size self.self_attn = Idefics2VisionAttention(config) self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) self.mlp = Idefics2VisionMLP(config) self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) # Copied from transformers.models.siglip.modeling_siglip.SiglipEncoderLayer.forward def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, output_attentions: Optional[bool] = False, ) -> Tuple[torch.FloatTensor]: """ Args: hidden_states (`torch.FloatTensor`): Input to the layer of shape `(batch, seq_len, embed_dim)`. attention_mask (`torch.FloatTensor`): Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values. output_attentions (`bool`, *optional*, defaults to `False`): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.layer_norm1(hidden_states) hidden_states, attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, ) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.layer_norm2(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs # Copied from transformers.models.siglip.modeling_siglip.SiglipEncoder with Siglip->Idefics2 class Idefics2Encoder(nn.Module): """ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a [`Idefics2EncoderLayer`]. Args: config: Idefics2Config """ def __init__(self, config: Idefics2Config): super().__init__() self.config = config self.layers = nn.ModuleList([Idefics2EncoderLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False # Ignore copy def forward( self, inputs_embeds, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: r""" Args: inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None hidden_states = inputs_embeds for encoder_layer in self.layers: if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( encoder_layer.__call__, hidden_states, attention_mask, output_attentions, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) IDEFICS2_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`Idefics2Config`] or [`Idefics2VisionConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ @add_start_docstrings( "The bare Idefics2 Model outputting raw hidden-states without any specific head on top.", IDEFICS2_START_DOCSTRING, ) class Idefics2PreTrainedModel(PreTrainedModel): config_class = Idefics2Config base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["Idefics2VisionAttention", "Idefics2MLP", "Idefics2PerceiverLayer", "Idefics2DecoderLayer"] _skip_keys_device_placement = "past_key_values" _supports_flash_attn_2 = True _supports_sdpa = True _supports_flex_attn = True _supports_cache_class = True def _init_weights(self, module): std = ( self.config.initializer_range if hasattr(self.config, "initializer_range") else self.config.get_text_config().initializer_range ) if hasattr(module, "class_embedding"): module.class_embedding.data.normal_(mean=0.0, std=std) if isinstance(module, (nn.Linear, nn.Conv2d)): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() IDEFICS2_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)): The tensors corresponding to the input images. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details ([]`LlavaProcessor`] uses [`CLIPImageProcessor`] for processing images). pixel_attention_mask (`torch.Tensor` of shape `(batch_size, image_size, image_size)`, *optional*): Mask to avoid performing attention on padding pixel indices. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( """Idefics2 vision encoder model that returnss raw image embeddings.""", IDEFICS2_START_DOCSTRING, ) class Idefics2VisionTransformer(Idefics2PreTrainedModel): config_class = Idefics2VisionConfig _supports_sdpa = True _supports_flash_attention_2 = True _supports_flex_attn = True def __init__(self, config: Idefics2VisionConfig): super().__init__(config) embed_dim = config.hidden_size self.config = config self.embeddings = Idefics2VisionEmbeddings(config) self.encoder = Idefics2Encoder(config) self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" def get_input_embeddings(self): return self.embeddings def set_input_embeddings(self, value): self.embeddings = value def forward( self, pixel_values, patch_attention_mask: Optional[torch.BoolTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict batch_size = pixel_values.size(0) if patch_attention_mask is None: patch_size = self.config.patch_size patch_attention_mask = torch.ones( ( batch_size, pixel_values.size(2) // patch_size, pixel_values.size(3) // patch_size, ) ) patch_attention_mask = patch_attention_mask.to(dtype=torch.bool, device=pixel_values.device) hidden_states = self.embeddings(pixel_values=pixel_values, patch_attention_mask=patch_attention_mask) patch_attention_mask = patch_attention_mask.view(batch_size, -1) # The call to `_upad_input` in `_flash_attention_forward` is expensive # So when the `patch_attention_mask` is full of 1s (i.e. attending to the whole sequence), # avoiding passing the attention_mask, which is equivalent to attending to the full sequence if not torch.any(~patch_attention_mask): patch_attention_mask = None elif not self._use_flash_attention_2: patch_attention_mask = _prepare_4d_attention_mask(patch_attention_mask, hidden_states.dtype) encoder_outputs = self.encoder( inputs_embeds=hidden_states, attention_mask=patch_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] last_hidden_state = self.post_layernorm(last_hidden_state) if not return_dict: return (last_hidden_state,) + encoder_outputs[1:] return BaseModelOutput( last_hidden_state=last_hidden_state, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) # Copied from transformers.models.llama.modeling_llama.repeat_kv def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Idefics2 class Idefics2RMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ Idefics2RMSNorm is equivalent to T5LayerNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) def extra_repr(self): return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" class Idefics2PerceiverAttention(nn.Module): def __init__(self, config, layer_idx: Optional[int] = None) -> None: """Perceiver Cross-Attention Module --> let long-form inputs be `context`, resampled embeddings be `latents`""" super().__init__() self.config = config self.layer_idx = None self.hidden_size = config.hidden_size self.num_heads = config.resampler_n_heads self.head_dim = config.resampler_head_dim self.num_key_value_heads = config.num_key_value_heads self.num_key_value_groups = self.num_heads // self.num_key_value_heads self.attention_dropout = config.attention_dropout self.scaling = self.head_dim**-0.5 self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) self.is_causal = False def forward( self, latents: torch.Tensor, context: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: bool = False, use_cache: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """ Runs Perceiver Self-Attention, with special (context, latents) appended along the `seq` dimension! Args: latents (`torch.Tensor`): Tensor of shape [bsz, n_latents, embed_dim] representing fixed length latents to compress to. context (`torch.Tensor`): Tensor of shape [bsz, seq, embed_dim] representing long-form context to resample. attention_mask (`torch.Tensor`, *optional*): Tensor of shape [bsz, 1, seq, n_latents] representing attention mask. position_ids (`torch.LongTensor`, *optional*): Tensor of shape [bsz, seq] representing position indices of each input token. past_key_value (`Tuple[torch.Tensor]`, *optional*): Tuple of tensors containing cached key and value states. output_attentions (`bool`, *optional*, defaults to `False`): Whether to return attention weights. use_cache (`bool`, *optional*, defaults to `False`): Whether to use past_key_value for caching. """ bsz, q_len, _ = latents.size() kv_seq_len = q_len + context.size()[1] hidden_states = torch.concat([context, latents], dim=-2) queries = self.q_proj(latents) keys = self.k_proj(hidden_states) values = self.v_proj(hidden_states) queries = queries.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) keys = keys.view(bsz, kv_seq_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) values = values.view(bsz, kv_seq_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) past_key_value = getattr(self, "past_key_value", past_key_value) if past_key_value is not None: keys, values = past_key_value.update(keys, values, self.layer_idx) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": if self.config._attn_implementation == "sdpa" and output_attentions: logger.warning_once( "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to " 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) else: attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, queries, keys, values, attention_mask, is_causal=self.is_causal, scaling=self.scaling, dropout=0.0 if not self.training else self.attention_dropout, ) attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_dim) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value class Idefics2PerceiverLayer(nn.Module): def __init__(self, config, layer_idx: int): super().__init__() self.hidden_size = config.hidden_size self.n_latents = config.resampler_n_latents self.depth = config.resampler_depth self.rms_norm_eps = config.rms_norm_eps self.input_latents_norm = Idefics2RMSNorm(self.hidden_size, eps=self.rms_norm_eps) self.input_context_norm = Idefics2RMSNorm(self.hidden_size, eps=self.rms_norm_eps) self.self_attn = Idefics2PerceiverAttention(config, layer_idx=layer_idx) self.post_attention_layernorm = Idefics2RMSNorm(self.hidden_size, eps=self.rms_norm_eps) self.mlp = Idefics2MLP( hidden_size=config.hidden_size, intermediate_size=config.hidden_size * 4, output_size=config.hidden_size, hidden_act=config.hidden_act, ) def forward( self, latents: torch.Tensor, context: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, **kwargs, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: latents (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` context (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch, sequence_length)` where padding elements are indicated by 0. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states """ residual = latents latents = self.input_latents_norm(latents) context = self.input_context_norm(context) latents, self_attn_weights, present_key_value = self.self_attn( latents=latents, context=context, attention_mask=attention_mask, ) latents = residual + latents residual = latents latents = self.post_attention_layernorm(latents) latents = self.mlp(latents) latents = residual + latents outputs = (latents,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (present_key_value,) return outputs IDEFICS2_INPUTS_DOCSTRING = r""" Args: context (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_dim)`): The hidden states of the image after vision encoder and modality projection. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) """ @add_start_docstrings( "Idefics2 perceiver resampler model that performs `depth` blocks of cross-attention with a fixed ", "`n_latents` inputs to decrease embedding sequence length. The Resampler acts as a form of learned pooling and ", "is derived from [Perceiver: General Perception with Iterative Attention](https://arxiv.org/abs/2103.03206)", IDEFICS2_START_DOCSTRING, ) class Idefics2PerceiverResampler(Idefics2PreTrainedModel): config_class = Idefics2PerceiverConfig _supports_sdpa = True _supports_flash_attention_2 = True _supports_flex_attn = True def __init__(self, config) -> None: super().__init__(config) self.hidden_size = config.hidden_size self.hidden_act = config.hidden_act self.n_latents = config.resampler_n_latents self.depth = config.resampler_depth self.rms_norm_eps = config.rms_norm_eps # Create Latents for Perceiver self.latents = nn.Parameter(torch.ones(self.n_latents, self.hidden_size)) # Create Transformer Blocks self.layers = nn.ModuleList([Idefics2PerceiverLayer(config, idx) for idx in range(self.depth)]) self.norm = Idefics2RMSNorm(self.hidden_size, eps=self.rms_norm_eps) self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" def forward( self, context: torch.Tensor, attention_mask: torch.Tensor, ) -> torch.Tensor: # seq embed -> bsz seq embed latents = self.latents.unsqueeze(0).expand((context.shape[0], *self.latents.size())) latent_attention_mask = torch.ones( (attention_mask.size(0), latents.size(1)), dtype=attention_mask.dtype, device=attention_mask.device ) attention_mask = torch.cat([attention_mask, latent_attention_mask], dim=-1) attention_mask = ( _prepare_4d_attention_mask(attention_mask, latents.dtype, tgt_len=self.n_latents) if not self._use_flash_attention_2 else attention_mask ) compressed_context = latents for perceiver_layer in self.layers: layer_outputs = perceiver_layer( compressed_context, context, attention_mask=attention_mask, position_ids=None, past_key_value=None, output_attentions=False, use_cache=False, ) compressed_context = layer_outputs[0] compressed_context = self.norm(compressed_context) return compressed_context class Idefics2Connector(nn.Module): def __init__(self, config): super().__init__() self.modality_projection = Idefics2MLP( hidden_size=config.vision_config.hidden_size, intermediate_size=config.text_config.intermediate_size, output_size=config.text_config.hidden_size, hidden_act=config.text_config.hidden_act, ) self.perceiver_resampler = Idefics2PerceiverResampler._from_config(config.perceiver_config) def forward(self, image_hidden_states, attention_mask): image_hidden_states = self.modality_projection(image_hidden_states) image_hidden_states = self.perceiver_resampler(context=image_hidden_states, attention_mask=attention_mask) return image_hidden_states IDEFICS2_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)): The tensors corresponding to the input images. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details ([]`LlavaProcessor`] uses [`CLIPImageProcessor`] for processing images). pixel_attention_mask (`torch.Tensor` of shape `(batch_size, image_size, image_size)`, *optional*): Mask to avoid performing attention on padding pixel indices. image_hidden_states (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`): The hidden states of the image encoder after modality projection and perceiver resampling. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length. """ @add_start_docstrings( """Idefics2 model consisting of a SIGLIP vision encoder and Mistral language decoder""", IDEFICS2_START_DOCSTRING, ) class Idefics2Model(Idefics2PreTrainedModel): def __init__(self, config: Idefics2Config): super().__init__(config) self.padding_idx = self.config.text_config.pad_token_id self.vocab_size = self.config.text_config.vocab_size self.vision_model = Idefics2VisionTransformer._from_config(config.vision_config) self.connector = Idefics2Connector(config) self.text_model = AutoModel.from_config(config.text_config) self.image_seq_len = config.perceiver_config.resampler_n_latents self.image_token_id = self.config.image_token_id self._use_flash_attention_2 = config.text_config._attn_implementation == "flash_attention_2" self.post_init() def enable_input_require_grads(self): """ Enables the gradients for the input embeddings. This is useful for lora when using gradient checkpointing. c.f. https://github.com/huggingface/peft/issues/1402#issuecomment-1913675032 Override to set output.requires_grad = True for both the decoder's and vision model's embeddings. """ def get_lowest_module(module): if len(list(module.children())) == 0: # If the module has no children, it is a leaf module (e.g., Linear, Conv2d, etc.) return module else: # Recursively call the function on each child module return get_lowest_module(list(module.children())[0]) def make_inputs_require_grads(module, input, output): output.requires_grad_(True) self._text_require_grads_hook = self.get_input_embeddings().register_forward_hook(make_inputs_require_grads) self._vision_require_grads_hook = get_lowest_module(self.vision_model).register_forward_hook( make_inputs_require_grads ) def disable_input_require_grads(self): self._text_require_grads_hook.remove() self._vision_require_grads_hook.remove() def get_input_embeddings(self): return self.text_model.get_input_embeddings() def set_input_embeddings(self, value): self.text_model.set_input_embeddings(value) def inputs_merger( self, input_ids: torch.LongTensor, inputs_embeds: Optional[torch.Tensor], image_hidden_states: Optional[torch.Tensor], ): """ This method aims at merging the token embeddings with the image hidden states into one single sequence of vectors that are fed to the transformer LM. The merging happens as follows: - The text token sequence is: `tok_1 tok_2 tok_3 <fake_token_around_image> <image> <image> ... <image> <fake_token_around_image> tok_4`. - We get the image hidden states for the image through the vision encoder (and potentially the perceiver), and that hidden state is then projected into the text embedding space. We thus have a sequence of image hidden states of size (1, image_seq_len, hidden_dim), where 1 is for batch_size of 1 image and hidden_dim is the hidden_dim of the LM transformer. - The merging happens so that we obtain the following sequence: `vector_tok_1 vector_tok_2 vector_tok_3 vector_fake_tok_around_image {sequence of image_seq_len image hidden states} vector_fake_toke_around_image vector_tok_4`. That sequence is fed to the LM. - To fit the format of that sequence, `input_ids`, `input_embeds`, `attention_mask` are all 3 adapted to insert the image hidden states. """ num_images, _, vision_hidden_size = image_hidden_states.shape special_image_token_mask = input_ids == self.image_token_id new_inputs_embeds = inputs_embeds.clone() reshaped_image_hidden_states = image_hidden_states.view(-1, vision_hidden_size) new_inputs_embeds[special_image_token_mask] = reshaped_image_hidden_states.to(new_inputs_embeds.device) return new_inputs_embeds @add_start_docstrings_to_model_forward( """ Inputs fed to the model can have an arbitrary number of images. To account for this, pixel_values fed to the model have image padding -> (batch_size, max_num_images, 3, max_heights, max_widths) where max_num_images is the maximum number of images among the batch_size samples in the batch. Padding images are not needed beyond padding the pixel_values at the entrance of the model. For efficiency, we only pass through the vision_model's forward the real images by discarding the padding images i.e. pixel_values of size (image_batch_size, 3, height, width) where image_batch_size would be 7 when num_images_per_sample=[1, 3, 1, 2] and max_num_images would be 3. """, IDEFICS2_INPUTS_DOCSTRING, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, pixel_attention_mask: Optional[torch.BoolTensor] = None, image_hidden_states: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, Idefics2BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if self.training and self.text_model.gradient_checkpointing and use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False # retrieve input_ids and inputs_embeds if input_ids is not None: batch_size, seq_length = input_ids.shape elif inputs_embeds is not None: batch_size, seq_length, _ = inputs_embeds.shape else: raise ValueError("You have to specify either input_ids or inputs_embeds") past_seen_tokens = 0 # kept for BC (non `Cache` `past_key_values` inputs) return_legacy_cache = False if use_cache: if not isinstance(past_key_values, Cache): return_legacy_cache = True if past_key_values is None: past_key_values = DynamicCache() else: past_key_values = DynamicCache.from_legacy_cache(past_key_values) logger.warning_once( "We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and " "will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class " "(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)" ) past_seen_tokens = past_key_values.get_seq_length() if inputs_embeds is not None and input_ids is None and past_seen_tokens == 0: raise ValueError("When first calling the model, if input_embeds are passed, input_ids should not be None.") if inputs_embeds is None: inputs_embeds = self.text_model.get_input_embeddings()(input_ids) # START VISUAL INPUTS INTEGRATION if pixel_values is not None and image_hidden_states is not None: raise ValueError("You cannot specify both pixel_values and image_hidden_states at the same time") elif pixel_values is not None: batch_size, num_images, num_channels, height, width = pixel_values.shape pixel_values = pixel_values.to(dtype=self.dtype) # fp16 compatibility pixel_values = pixel_values.view(batch_size * num_images, *pixel_values.shape[2:]) # Remove padding images - padding images are full 0. nb_values_per_image = pixel_values.shape[1:].numel() real_images_inds = (pixel_values == 0.0).sum(dim=(-1, -2, -3)) != nb_values_per_image pixel_values = pixel_values[real_images_inds].contiguous() # Handle the vision attention mask if pixel_attention_mask is None: pixel_attention_mask = torch.ones( size=(pixel_values.size(0), pixel_values.size(2), pixel_values.size(3)), dtype=torch.bool, device=pixel_values.device, ) else: # Remove padding images from the mask/pP p pixel_attention_mask = pixel_attention_mask.view( batch_size * num_images, *pixel_attention_mask.shape[2:] ) pixel_attention_mask = pixel_attention_mask[real_images_inds].contiguous() patch_size = self.config.vision_config.patch_size patches_subgrid = pixel_attention_mask.unfold(dimension=1, size=patch_size, step=patch_size) patches_subgrid = patches_subgrid.unfold(dimension=2, size=patch_size, step=patch_size) patch_attention_mask = (patches_subgrid.sum(dim=(-1, -2)) == patch_size * patch_size).bool() # Get sequence from the vision encoder image_hidden_states = self.vision_model( pixel_values=pixel_values, patch_attention_mask=patch_attention_mask, ).last_hidden_state # Modality projection & resampling image_hidden_states = self.connector( image_hidden_states, attention_mask=patch_attention_mask.view(pixel_values.size(0), -1) ) elif image_hidden_states is not None: image_hidden_states = image_hidden_states.to(dtype=self.dtype, device=input_ids.device) if past_seen_tokens == 0 and inputs_embeds is not None and image_hidden_states is not None: # When we generate, we don't want to replace the potential image_token_id that we generated by images # that simply don't exist inputs_embeds = self.inputs_merger( input_ids=input_ids, inputs_embeds=inputs_embeds, image_hidden_states=image_hidden_states, ) outputs = self.text_model( inputs_embeds=inputs_embeds, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, cache_position=cache_position, return_dict=return_dict, ) if return_legacy_cache and use_cache: outputs.past_key_values = outputs.past_key_values.to_legacy_cache() if not return_dict: return tuple(v for v in [*outputs, image_hidden_states] if v is not None) return Idefics2BaseModelOutputWithPast( last_hidden_state=outputs.last_hidden_state, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, image_hidden_states=image_hidden_states, ) @add_start_docstrings( """The Idefics2 Model with a language modeling head. It is made up a SigLIP vision encoder, with a language modeling head on top. """, IDEFICS2_START_DOCSTRING, ) class Idefics2ForConditionalGeneration(Idefics2PreTrainedModel, GenerationMixin): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config): super().__init__(config) self.model = Idefics2Model(config) self.image_token_id = self.config.image_token_id self.lm_head = nn.Linear(config.text_config.hidden_size, config.text_config.vocab_size, bias=False) self.vocab_size = config.text_config.vocab_size # Initialize weights and apply final processing self.post_init() def enable_input_require_grads(self): """ Enables the gradients for the input embeddings. This is useful for fine-tuning adapter weights while keeping the model weights fixed. """ def make_inputs_require_grads(module, input, output): output.requires_grad_(True) self._text_require_grads_hook = self.get_input_embeddings().register_forward_hook(make_inputs_require_grads) self._vision_require_grads_hook = self.model.vision_model.get_input_embeddings().register_forward_hook( make_inputs_require_grads ) def disable_input_require_grads(self): self._text_require_grads_hook.remove() self._vision_require_grads_hook.remove() def get_input_embeddings(self): return self.model.text_model.get_input_embeddings() def set_input_embeddings(self, value): self.model.text_model.set_input_embeddings(value) def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep") @add_start_docstrings_to_model_forward(IDEFICS2_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Idefics2CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, pixel_attention_mask: Optional[torch.BoolTensor] = None, image_hidden_states: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, logits_to_keep: Union[int, torch.Tensor] = 0, ) -> Union[Tuple, Idefics2CausalLMOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or `model.image_token_id` (where `model` is your instance of `Idefics2ForConditionalGeneration`). Tokens with indices set to `model.image_token_id` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. logits_to_keep (`int` or `torch.Tensor`, *optional*): If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that token can save memory, which becomes pretty significant for long sequences or large vocabulary size. If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension. This is useful when using packed tensor format (single dimension for batch and sequence length). Returns: Example: ```python >>> import requests >>> import torch >>> from PIL import Image >>> from io import BytesIO >>> from transformers import AutoProcessor, AutoModelForVision2Seq >>> from transformers.image_utils import load_image >>> # Note that passing the image urls (instead of the actual pil images) to the processor is also possible >>> image1 = load_image("https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg") >>> image2 = load_image("https://cdn.britannica.com/59/94459-050-DBA42467/Skyline-Chicago.jpg") >>> image3 = load_image("https://cdn.britannica.com/68/170868-050-8DDE8263/Golden-Gate-Bridge-San-Francisco.jpg") >>> processor = AutoProcessor.from_pretrained("HuggingFaceM4/idefics2-8b-base") >>> model = AutoModelForVision2Seq.from_pretrained("HuggingFaceM4/idefics2-8b-base", device_map="auto") >>> BAD_WORDS_IDS = processor.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids >>> EOS_WORDS_IDS = [processor.tokenizer.eos_token_id] >>> # Create inputs >>> prompts = [ ... "<image>In this image, we can see the city of New York, and more specifically the Statue of Liberty.<image>In this image,", ... "In which city is that bridge located?<image>", ... ] >>> images = [[image1, image2], [image3]] >>> inputs = processor(images=images, text=prompts, padding=True, return_tensors="pt").to("cuda") >>> # Generate >>> generated_ids = model.generate(**inputs, bad_words_ids=BAD_WORDS_IDS, max_new_tokens=20) >>> generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True) >>> print(generated_texts) ['In this image, we can see the city of New York, and more specifically the Statue of Liberty. In this image, we can see the city of New York, and more specifically the Statue of Liberty.\n\n', 'In which city is that bridge located?\n\nThe bridge is located in the city of Pittsburgh, Pennsylvania.\n\n\nThe bridge is'] ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, pixel_values=pixel_values, pixel_attention_mask=pixel_attention_mask, image_hidden_states=image_hidden_states, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, cache_position=cache_position, return_dict=return_dict, ) hidden_states = outputs[0] # Only compute necessary logits, and do not upcast them to float if we are not computing the loss slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep logits = self.lm_head(hidden_states[:, slice_indices, :]) loss = None if labels is not None: # Upcast to float if we need to compute the loss to avoid potential precision issues logits = logits.float() labels = labels.to(logits.device) # Shift so that tokens < n predict n if attention_mask is not None: # we use the input attention mask to shift the logits and labels, because it is 2D. # we also crop attn mask in case it is longer, which happens in PrefixTuning with peft shift_attention_mask = attention_mask[:, -(logits.shape[1] - 1) :].to(logits.device) shift_logits = logits[..., :-1, :][shift_attention_mask != 0].contiguous() shift_labels = labels[..., 1:][shift_attention_mask != 0].contiguous() else: shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return Idefics2CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, image_hidden_states=outputs.image_hidden_states, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, pixel_values=None, pixel_attention_mask=None, image_hidden_states=None, logits_to_keep=None, **kwargs, ): # Overwritten -- there are mutually exclusive inputs (if the logic to make `image_hidden_states` take # precedence is moved to the model, we can remove this fn) model_inputs = super().prepare_inputs_for_generation( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, inputs_embeds=inputs_embeds, cache_position=cache_position, pixel_values=pixel_values, pixel_attention_mask=pixel_attention_mask, image_hidden_states=image_hidden_states, logits_to_keep=logits_to_keep, **kwargs, ) # if `inputs_embeds` are passed, we only want to use them in the 1st generation step # but IDEFICS requires both ids and embeds to be present if inputs_embeds is not None and cache_position[0] == 0: model_inputs["input_ids"] = input_ids if image_hidden_states is not None: model_inputs["pixel_values"] = None model_inputs["pixel_attention_mask"] = None return model_inputs def _update_model_kwargs_for_generation(self, outputs, model_kwargs, is_encoder_decoder, **kwargs): model_kwargs = super()._update_model_kwargs_for_generation( outputs=outputs, model_kwargs=model_kwargs, is_encoder_decoder=is_encoder_decoder, **kwargs, ) # Get the precomputed image_hidden_states model_kwargs["image_hidden_states"] = outputs.image_hidden_states return model_kwargs @staticmethod # Copied from transformers.models.opt.modeling_opt.OPTForCausalLM._reorder_cache def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past __all__ = ["Idefics2ForConditionalGeneration", "Idefics2PreTrainedModel", "Idefics2Model"]
Memory