# coding=utf-8 # Copyright 2024 Google Inc. HuggingFace Inc. team. All rights reserved. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial from typing import Callable, Optional, Tuple, Union import torch import torch.nn as nn import torch.utils.checkpoint from ...activations import ACT2FN from ...cache_utils import Cache, HybridCache, StaticCache from ...configuration_utils import PretrainedConfig from ...modeling_flash_attention_utils import FlashAttentionKwargs from ...modeling_outputs import ( BaseModelOutputWithPast, CausalLMOutputWithPast, ) from ...modeling_utils import ALL_ATTENTION_FUNCTIONS from ...processing_utils import Unpack from ...utils import logging from ..gemma.modeling_gemma import ( GemmaAttention, GemmaForCausalLM, GemmaForSequenceClassification, GemmaForTokenClassification, GemmaMLP, GemmaModel, GemmaRMSNorm, apply_rotary_pos_emb, repeat_kv, ) _CHECKPOINT_FOR_DOC = "google/gemma2-7b" logger = logging.get_logger(__name__) class Gemma2Config(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`Gemma2Model`]. It is used to instantiate an Gemma2 model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Gemma2-7B. e.g. [google/gemma2-7b](https://huggingface.co/google/gemma2-7b) Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 256000): Vocabulary size of the Gemma2 model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`Gemma2Model`] hidden_size (`int`, *optional*, defaults to 2304): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 9216): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 26): Number of hidden layers in the Transformer decoder. num_attention_heads (`int`, *optional*, defaults to 8): Number of attention heads for each attention layer in the Transformer decoder. num_key_value_heads (`int`, *optional*, defaults to 4): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `num_attention_heads`. head_dim (`int`, *optional*, defaults to 256): The attention head dimension. hidden_activation (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`): The non-linear activation function (function or string) in the decoder. Will default to `"gelu_pytorch_tanh"` if not specified. `"gelu_pytorch_tanh"` uses an approximation of the `"gelu"` activation function. max_position_embeddings (`int`, *optional*, defaults to 8192): The maximum sequence length that this model might ever be used with. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. rms_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the rms normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. pad_token_id (`int`, *optional*, defaults to 0): Padding token id. eos_token_id (`int`, *optional*, defaults to 1): End of stream token id. bos_token_id (`int`, *optional*, defaults to 2): Beginning of stream token id. tie_word_embeddings (`bool`, *optional*, defaults to `True`): Whether to tie weight embeddings rope_theta (`float`, *optional*, defaults to 10000.0): The base period of the RoPE embeddings. attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`): Whether to use a bias in the query, key, value and output projection layers during self-attention. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. query_pre_attn_scalar (`float`, *optional*, defaults to 256): scaling factor used on the attention scores sliding_window (`int`, *optional*, defaults to 4096): in Gemma2, every other layer uses sliding window attention. This is the size of the sliding window. final_logit_softcapping (`float`, *optional*, defaults to 30.0): scaling factor when applying tanh softcapping on the logits. attn_logit_softcapping (`float`, *optional*, defaults to 50.0): scaling factor when applying tanh softcapping on the attention scores. cache_implementation (`str`, *optional*, defaults to `"hybrid"`): the cache type to be used with `generate`. ```python >>> from transformers import Gemma2Model, Gemma2Config >>> # Initializing a Gemma2 gemma2-7b style configuration >>> configuration = Gemma2Config() >>> # Initializing a model from the gemma2-7b style configuration >>> model = Gemma2Model(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "gemma2" keys_to_ignore_at_inference = ["past_key_values"] base_model_tp_plan = { "layers.*.self_attn.q_proj": "colwise", "layers.*.self_attn.k_proj": "colwise", "layers.*.self_attn.v_proj": "colwise", "layers.*.self_attn.o_proj": "rowwise", "layers.*.mlp.gate_proj": "colwise", "layers.*.mlp.up_proj": "colwise", "layers.*.mlp.down_proj": "rowwise", } base_model_pp_plan = { "embed_tokens": (["input_ids"], ["inputs_embeds"]), "layers": (["hidden_states", "attention_mask"], ["hidden_states"]), "norm": (["hidden_states"], ["hidden_states"]), } def __init__( self, vocab_size=256000, hidden_size=2304, intermediate_size=9216, num_hidden_layers=26, num_attention_heads=8, num_key_value_heads=4, head_dim=256, hidden_activation="gelu_pytorch_tanh", max_position_embeddings=8192, initializer_range=0.02, rms_norm_eps=1e-6, use_cache=True, pad_token_id=0, eos_token_id=1, bos_token_id=2, tie_word_embeddings=True, rope_theta=10000.0, attention_bias=False, attention_dropout=0.0, query_pre_attn_scalar=256, sliding_window=4096, final_logit_softcapping=30.0, attn_logit_softcapping=50.0, cache_implementation="hybrid", **kwargs, ): super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.head_dim = head_dim self.num_key_value_heads = num_key_value_heads self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache self.rope_theta = rope_theta self.attention_bias = attention_bias self.attention_dropout = attention_dropout self.hidden_activation = hidden_activation self.query_pre_attn_scalar = query_pre_attn_scalar self.sliding_window = sliding_window self.final_logit_softcapping = final_logit_softcapping self.attn_logit_softcapping = attn_logit_softcapping self.cache_implementation = cache_implementation class Gemma2RMSNorm(GemmaRMSNorm): pass class Gemma2MLP(GemmaMLP): def __init__(self, config): super().__init__() self.act_fn = ACT2FN[config.hidden_activation] def eager_attention_forward( module: nn.Module, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: Optional[torch.Tensor], dropout: float = 0.0, scaling: Optional[float] = None, softcap: Optional[float] = None, **kwargs, ) -> Tuple[torch.Tensor, torch.Tensor]: if scaling is None: scaling = module.head_dim**-0.5 key_states = repeat_kv(key, module.num_key_value_groups) value_states = repeat_kv(value, module.num_key_value_groups) attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling if softcap is not None: attn_weights = attn_weights / softcap attn_weights = torch.tanh(attn_weights) attn_weights = attn_weights * softcap if attention_mask is not None: # no matter the length, we just slice it causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) attn_output = torch.matmul(attn_weights, value_states) attn_output = attn_output.transpose(1, 2).contiguous() return attn_output, attn_weights class Gemma2Attention(GemmaAttention): def __init__(self, config: Gemma2Config, layer_idx: int): super().__init__(config, layer_idx) self.attn_logit_softcapping = self.config.attn_logit_softcapping self.attention_dropout = self.config.attention_dropout self.is_causal = True self.scaling = config.query_pre_attn_scalar**-0.5 self.sliding_window = config.sliding_window if not bool(layer_idx % 2) else None def forward( self, hidden_states: torch.Tensor, position_embeddings: Tuple[torch.Tensor, torch.Tensor], attention_mask: Optional[torch.Tensor], past_key_value: Optional[Cache] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs: Unpack[FlashAttentionKwargs], ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: input_shape = hidden_states.shape[:-1] hidden_shape = (*input_shape, -1, self.head_dim) query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = { "sin": sin, "cos": cos, "cache_position": cache_position, "sliding_window": self.sliding_window, } key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) # Here we need to slice as we use a static cache by default, but FA2 does not support it if attention_mask is not None and self.config._attn_implementation == "flash_attention_2": seq_len = attention_mask.shape[-1] key_states, value_states = key_states[:, :, :seq_len, :], value_states[:, :, :seq_len, :] attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False): logger.warning_once( "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to " 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) else: attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=self.attention_dropout if self.training else 0.0, scaling=self.scaling, sliding_window=self.sliding_window, softcap=self.attn_logit_softcapping, **kwargs, ) attn_output = attn_output.reshape(*input_shape, -1).contiguous() attn_output = self.o_proj(attn_output) return attn_output, attn_weights class Gemma2DecoderLayer(nn.Module): def __init__(self, config: Gemma2Config, layer_idx: int): super().__init__() self.hidden_size = config.hidden_size self.config = config self.is_sliding = not bool(layer_idx % 2) self.self_attn = Gemma2Attention(config=config, layer_idx=layer_idx) self.mlp = Gemma2MLP(config) self.input_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.pre_feedforward_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_feedforward_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.sliding_window = config.sliding_window def forward( self, hidden_states: torch.Tensor, position_embeddings: Tuple[torch.Tensor, torch.Tensor], attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, last_cache_position: int = 0, **kwargs, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: if self.is_sliding and attention_mask is not None: # efficient SDPA and no padding # In prefill, we may be larger than sliding window effective_seq_len = max(cache_position.shape[0], self.sliding_window) # For FA2, the mask is 2D and is of shape [bs, processed_tokens] (not [bs, max_cache_len]), # thus we must slice from the right (at most `effective_seq_len` elements) if self.config._attn_implementation == "flash_attention_2": attention_mask = attention_mask[:, -effective_seq_len:] # Otherwise, the mask is 4D of shape [bs, 1, query_len, max_cache_len] thus we must slice # from the left, with an offset if we are beyond the sliding window else: min_dtype = torch.finfo(attention_mask.dtype).min sliding_window_mask = torch.tril( torch.ones_like(attention_mask, dtype=torch.bool), diagonal=-self.sliding_window ) attention_mask = torch.where(sliding_window_mask, min_dtype, attention_mask) # In case we are beyond the sliding window, we need to correctly offset the mask slicing # `last_cache_position` is equivalent to `cache_position[-1]` but without breaking dynamo offset = last_cache_position - effective_seq_len # Should only be used when beyond the sliding window (i.e. offset > 0) offset = max(0, offset) attention_mask = attention_mask[:, :, :, offset : offset + effective_seq_len] residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, position_embeddings=position_embeddings, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, **kwargs, ) hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.pre_feedforward_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = self.post_feedforward_layernorm(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) return outputs class Gemma2Model(GemmaModel): def __init__(self, config: Gemma2Config): super().__init__(config) self.layers = nn.ModuleList( [Gemma2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[HybridCache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, last_cache_position: Optional[int] = None, **flash_attn_kwargs: Unpack[FlashAttentionKwargs], ) -> BaseModelOutputWithPast: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if self.gradient_checkpointing and self.training and use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." ) use_cache = False if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) if use_cache and past_key_values is None and not self.training: batch_size, seq_len, _ = inputs_embeds.shape # NOTE: ideally, `HybridCache` should be initialized outside the model with `layer_device_map` past_key_values = HybridCache( self.config, max_batch_size=batch_size, max_cache_len=seq_len, dtype=inputs_embeds.dtype, device=self.device, ) if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) # This is needed to correctly slice the mask without data-dependent slicing later on if using dynamo tracing # (retrieving the same value from `cache_position` later on would crash dynamo) if last_cache_position is None: last_cache_position = 0 if attention_mask is not None: # In case a 4d mask is passed directly without using `generate`, we have to rely on cache_position # It will break dynamo tracing but there are no way around it (and it should never happen in practice) last_cache_position = ( attention_mask.shape[-1] if attention_mask.dim() == 2 else cache_position[-1].item() ) causal_mask = self._update_causal_mask( attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions ) # embed positions hidden_states = inputs_embeds # create position embeddings to be shared across the decoder layers position_embeddings = self.rotary_emb(hidden_states, position_ids) # normalized # Gemma2 downcasts the below to float16, causing sqrt(3072)=55.4256 to become 55.5 # See https://github.com/huggingface/transformers/pull/29402 normalizer = torch.tensor(self.config.hidden_size**0.5, dtype=hidden_states.dtype) hidden_states = hidden_states * normalizer # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None for decoder_layer in self.layers[: self.config.num_hidden_layers]: if output_hidden_states: all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( partial(decoder_layer.__call__, **flash_attn_kwargs), hidden_states, position_embeddings, causal_mask, position_ids, past_key_values, output_attentions, use_cache, cache_position, last_cache_position, ) else: layer_outputs = decoder_layer( hidden_states, position_embeddings=position_embeddings, attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, last_cache_position=last_cache_position, **flash_attn_kwargs, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) if output_hidden_states: all_hidden_states += (hidden_states,) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=past_key_values, hidden_states=all_hidden_states, attentions=all_self_attns, ) @torch.no_grad() def _update_causal_mask( self, attention_mask: torch.Tensor, input_tensor: torch.Tensor, cache_position: torch.Tensor, past_key_values: HybridCache, output_attentions: bool, ): # Flash Attention currently doesn't support static cache but Gemma2 work only with static cache. # So we will pass in attention mask as is in any case, not only when ther's padding. Then we'll use its shape # to cut out keys/values trailing 0 used in static cache. This workaround should be compile compatible # as it doesn't cause dynamic control issues. if self.config._attn_implementation == "flash_attention_2": return attention_mask dtype, device = input_tensor.dtype, input_tensor.device sequence_length = input_tensor.shape[1] if isinstance(past_key_values, (HybridCache, StaticCache)): target_length = past_key_values.get_max_cache_shape() else: target_length = attention_mask.shape[-1] if attention_mask is not None else input_tensor.shape[1] # In case the provided `attention` mask is 2D, we generate a causal mask here (4D). causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( attention_mask, sequence_length=sequence_length, target_length=target_length, dtype=dtype, device=device, cache_position=cache_position, batch_size=input_tensor.shape[0], ) return causal_mask class Gemma2ForCausalLM(GemmaForCausalLM): def __init__(self, config): super().__init__(config) self.model = Gemma2Model(config) self.post_init() def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[HybridCache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, logits_to_keep: Union[int, torch.Tensor] = 0, **loss_kwargs, ) -> CausalLMOutputWithPast: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. logits_to_keep (`int` or `torch.Tensor`, *optional*): If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that token can save memory, which becomes pretty significant for long sequences or large vocabulary size. If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension. This is useful when using packed tensor format (single dimension for batch and sequence length). Returns: Example: ```python >>> from transformers import AutoTokenizer, Gemma2ForCausalLM >>> model = Gemma2ForCausalLM.from_pretrained("google/gemma-2-9b") >>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b") >>> prompt = "What is your favorite condiment?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "What is your favorite condiment?" ```""" if self.training and self.config._attn_implementation != "eager": logger.warning_once( "It is strongly recommended to train Gemma2 models with the `eager` attention implementation " f"instead of `{self.config._attn_implementation}`. Use `eager` with `AutoModelForCausalLM.from_pretrained('<path-to-checkpoint>', attn_implementation='eager')`." ) output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs: BaseModelOutputWithPast = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, cache_position=cache_position, **loss_kwargs, ) hidden_states = outputs.last_hidden_state # Only compute necessary logits, and do not upcast them to float if we are not computing the loss slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep logits = self.lm_head(hidden_states[:, slice_indices, :]) if self.config.final_logit_softcapping is not None: logits = logits / self.config.final_logit_softcapping logits = torch.tanh(logits) logits = logits * self.config.final_logit_softcapping loss = None if labels is not None: loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs) return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, position_ids=None, use_cache=True, logits_to_keep=None, **kwargs, ): # Overwritten: has a special cache type, `HybridCache` model_inputs = super().prepare_inputs_for_generation( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, inputs_embeds=inputs_embeds, cache_position=cache_position, position_ids=position_ids, use_cache=use_cache, logits_to_keep=logits_to_keep, **kwargs, ) # This is needed to correctly slice the mask without data-dependent slicing later on if using dynamo tracing # (retrieving the same value from `cache_position` later on would crash dynamo) model_inputs["last_cache_position"] = attention_mask.shape[-1] if attention_mask is not None else 0 if logits_to_keep is None: _ = model_inputs.pop("logits_to_keep", None) if ( isinstance(past_key_values, HybridCache) and attention_mask.ndim == 2 and not self.config._attn_implementation == "flash_attention_2" ): if model_inputs["inputs_embeds"] is not None: batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape device = model_inputs["inputs_embeds"].device else: batch_size, sequence_length = model_inputs["input_ids"].shape device = model_inputs["input_ids"].device attention_mask = self.model._prepare_4d_causal_attention_mask_with_cache_position( attention_mask, sequence_length=sequence_length, target_length=past_key_values.get_max_cache_shape(), dtype=self.lm_head.weight.dtype, device=device, cache_position=cache_position, batch_size=batch_size, ) model_inputs["attention_mask"] = attention_mask return model_inputs class Gemma2ForSequenceClassification(GemmaForSequenceClassification): def __init__(self, config): super().__init__(config) self.model = Gemma2Model(config) self.post_init() class Gemma2ForTokenClassification(GemmaForTokenClassification): def __init__(self, config): super().__init__(config) self.model = Gemma2Model(config) self.post_init() __all__ = [ "Gemma2Config", "Gemma2ForCausalLM", "Gemma2Model", "Gemma2PreTrainedModel", # noqa: F822 "Gemma2ForSequenceClassification", "Gemma2ForTokenClassification", ]
Memory