/* pybind11/cast.h: Partial template specializations to cast between C++ and Python types Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch> All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #pragma once #include "detail/common.h" #include "detail/descr.h" #include "detail/type_caster_base.h" #include "detail/typeid.h" #include "pytypes.h" #include <array> #include <cstring> #include <functional> #include <iosfwd> #include <iterator> #include <memory> #include <string> #include <tuple> #include <type_traits> #include <utility> #include <vector> PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE) PYBIND11_WARNING_DISABLE_MSVC(4127) PYBIND11_NAMESPACE_BEGIN(detail) template <typename type, typename SFINAE = void> class type_caster : public type_caster_base<type> {}; template <typename type> using make_caster = type_caster<intrinsic_t<type>>; // Shortcut for calling a caster's `cast_op_type` cast operator for casting a type_caster to a T template <typename T> typename make_caster<T>::template cast_op_type<T> cast_op(make_caster<T> &caster) { using result_t = typename make_caster<T>::template cast_op_type<T>; // See PR #4893 return caster.operator result_t(); } template <typename T> typename make_caster<T>::template cast_op_type<typename std::add_rvalue_reference<T>::type> cast_op(make_caster<T> &&caster) { using result_t = typename make_caster<T>::template cast_op_type< typename std::add_rvalue_reference<T>::type>; // See PR #4893 return std::move(caster).operator result_t(); } template <typename type> class type_caster<std::reference_wrapper<type>> { private: using caster_t = make_caster<type>; caster_t subcaster; using reference_t = type &; using subcaster_cast_op_type = typename caster_t::template cast_op_type<reference_t>; static_assert( std::is_same<typename std::remove_const<type>::type &, subcaster_cast_op_type>::value || std::is_same<reference_t, subcaster_cast_op_type>::value, "std::reference_wrapper<T> caster requires T to have a caster with an " "`operator T &()` or `operator const T &()`"); public: bool load(handle src, bool convert) { return subcaster.load(src, convert); } static constexpr auto name = caster_t::name; static handle cast(const std::reference_wrapper<type> &src, return_value_policy policy, handle parent) { // It is definitely wrong to take ownership of this pointer, so mask that rvp if (policy == return_value_policy::take_ownership || policy == return_value_policy::automatic) { policy = return_value_policy::automatic_reference; } return caster_t::cast(&src.get(), policy, parent); } template <typename T> using cast_op_type = std::reference_wrapper<type>; explicit operator std::reference_wrapper<type>() { return cast_op<type &>(subcaster); } }; #define PYBIND11_TYPE_CASTER(type, py_name) \ protected: \ type value; \ \ public: \ static constexpr auto name = py_name; \ template <typename T_, \ ::pybind11::detail::enable_if_t< \ std::is_same<type, ::pybind11::detail::remove_cv_t<T_>>::value, \ int> \ = 0> \ static ::pybind11::handle cast( \ T_ *src, ::pybind11::return_value_policy policy, ::pybind11::handle parent) { \ if (!src) \ return ::pybind11::none().release(); \ if (policy == ::pybind11::return_value_policy::take_ownership) { \ auto h = cast(std::move(*src), policy, parent); \ delete src; \ return h; \ } \ return cast(*src, policy, parent); \ } \ operator type *() { return &value; } /* NOLINT(bugprone-macro-parentheses) */ \ operator type &() { return value; } /* NOLINT(bugprone-macro-parentheses) */ \ operator type &&() && { return std::move(value); } /* NOLINT(bugprone-macro-parentheses) */ \ template <typename T_> \ using cast_op_type = ::pybind11::detail::movable_cast_op_type<T_> template <typename CharT> using is_std_char_type = any_of<std::is_same<CharT, char>, /* std::string */ #if defined(PYBIND11_HAS_U8STRING) std::is_same<CharT, char8_t>, /* std::u8string */ #endif std::is_same<CharT, char16_t>, /* std::u16string */ std::is_same<CharT, char32_t>, /* std::u32string */ std::is_same<CharT, wchar_t> /* std::wstring */ >; template <typename T> struct type_caster<T, enable_if_t<std::is_arithmetic<T>::value && !is_std_char_type<T>::value>> { using _py_type_0 = conditional_t<sizeof(T) <= sizeof(long), long, long long>; using _py_type_1 = conditional_t<std::is_signed<T>::value, _py_type_0, typename std::make_unsigned<_py_type_0>::type>; using py_type = conditional_t<std::is_floating_point<T>::value, double, _py_type_1>; public: bool load(handle src, bool convert) { py_type py_value; if (!src) { return false; } #if !defined(PYPY_VERSION) auto index_check = [](PyObject *o) { return PyIndex_Check(o); }; #else // In PyPy 7.3.3, `PyIndex_Check` is implemented by calling `__index__`, // while CPython only considers the existence of `nb_index`/`__index__`. auto index_check = [](PyObject *o) { return hasattr(o, "__index__"); }; #endif if (std::is_floating_point<T>::value) { if (convert || PyFloat_Check(src.ptr())) { py_value = (py_type) PyFloat_AsDouble(src.ptr()); } else { return false; } } else if (PyFloat_Check(src.ptr()) || (!convert && !PYBIND11_LONG_CHECK(src.ptr()) && !index_check(src.ptr()))) { return false; } else { handle src_or_index = src; // PyPy: 7.3.7's 3.8 does not implement PyLong_*'s __index__ calls. #if PY_VERSION_HEX < 0x03080000 || defined(PYPY_VERSION) object index; if (!PYBIND11_LONG_CHECK(src.ptr())) { // So: index_check(src.ptr()) index = reinterpret_steal<object>(PyNumber_Index(src.ptr())); if (!index) { PyErr_Clear(); if (!convert) return false; } else { src_or_index = index; } } #endif if (std::is_unsigned<py_type>::value) { py_value = as_unsigned<py_type>(src_or_index.ptr()); } else { // signed integer: py_value = sizeof(T) <= sizeof(long) ? (py_type) PyLong_AsLong(src_or_index.ptr()) : (py_type) PYBIND11_LONG_AS_LONGLONG(src_or_index.ptr()); } } // Python API reported an error bool py_err = py_value == (py_type) -1 && PyErr_Occurred(); // Check to see if the conversion is valid (integers should match exactly) // Signed/unsigned checks happen elsewhere if (py_err || (std::is_integral<T>::value && sizeof(py_type) != sizeof(T) && py_value != (py_type) (T) py_value)) { PyErr_Clear(); if (py_err && convert && (PyNumber_Check(src.ptr()) != 0)) { auto tmp = reinterpret_steal<object>(std::is_floating_point<T>::value ? PyNumber_Float(src.ptr()) : PyNumber_Long(src.ptr())); PyErr_Clear(); return load(tmp, false); } return false; } value = (T) py_value; return true; } template <typename U = T> static typename std::enable_if<std::is_floating_point<U>::value, handle>::type cast(U src, return_value_policy /* policy */, handle /* parent */) { return PyFloat_FromDouble((double) src); } template <typename U = T> static typename std::enable_if<!std::is_floating_point<U>::value && std::is_signed<U>::value && (sizeof(U) <= sizeof(long)), handle>::type cast(U src, return_value_policy /* policy */, handle /* parent */) { return PYBIND11_LONG_FROM_SIGNED((long) src); } template <typename U = T> static typename std::enable_if<!std::is_floating_point<U>::value && std::is_unsigned<U>::value && (sizeof(U) <= sizeof(unsigned long)), handle>::type cast(U src, return_value_policy /* policy */, handle /* parent */) { return PYBIND11_LONG_FROM_UNSIGNED((unsigned long) src); } template <typename U = T> static typename std::enable_if<!std::is_floating_point<U>::value && std::is_signed<U>::value && (sizeof(U) > sizeof(long)), handle>::type cast(U src, return_value_policy /* policy */, handle /* parent */) { return PyLong_FromLongLong((long long) src); } template <typename U = T> static typename std::enable_if<!std::is_floating_point<U>::value && std::is_unsigned<U>::value && (sizeof(U) > sizeof(unsigned long)), handle>::type cast(U src, return_value_policy /* policy */, handle /* parent */) { return PyLong_FromUnsignedLongLong((unsigned long long) src); } PYBIND11_TYPE_CASTER(T, const_name<std::is_integral<T>::value>("int", "float")); }; template <typename T> struct void_caster { public: bool load(handle src, bool) { if (src && src.is_none()) { return true; } return false; } static handle cast(T, return_value_policy /* policy */, handle /* parent */) { return none().release(); } PYBIND11_TYPE_CASTER(T, const_name("None")); }; template <> class type_caster<void_type> : public void_caster<void_type> {}; template <> class type_caster<void> : public type_caster<void_type> { public: using type_caster<void_type>::cast; bool load(handle h, bool) { if (!h) { return false; } if (h.is_none()) { value = nullptr; return true; } /* Check if this is a capsule */ if (isinstance<capsule>(h)) { value = reinterpret_borrow<capsule>(h); return true; } /* Check if this is a C++ type */ const auto &bases = all_type_info((PyTypeObject *) type::handle_of(h).ptr()); if (bases.size() == 1) { // Only allowing loading from a single-value type value = values_and_holders(reinterpret_cast<instance *>(h.ptr())).begin()->value_ptr(); return true; } /* Fail */ return false; } static handle cast(const void *ptr, return_value_policy /* policy */, handle /* parent */) { if (ptr) { return capsule(ptr).release(); } return none().release(); } template <typename T> using cast_op_type = void *&; explicit operator void *&() { return value; } static constexpr auto name = const_name("capsule"); private: void *value = nullptr; }; template <> class type_caster<std::nullptr_t> : public void_caster<std::nullptr_t> {}; template <> class type_caster<bool> { public: bool load(handle src, bool convert) { if (!src) { return false; } if (src.ptr() == Py_True) { value = true; return true; } if (src.ptr() == Py_False) { value = false; return true; } if (convert || is_numpy_bool(src)) { // (allow non-implicit conversion for numpy booleans), use strncmp // since NumPy 1.x had an additional trailing underscore. Py_ssize_t res = -1; if (src.is_none()) { res = 0; // None is implicitly converted to False } #if defined(PYPY_VERSION) // On PyPy, check that "__bool__" attr exists else if (hasattr(src, PYBIND11_BOOL_ATTR)) { res = PyObject_IsTrue(src.ptr()); } #else // Alternate approach for CPython: this does the same as the above, but optimized // using the CPython API so as to avoid an unneeded attribute lookup. else if (auto *tp_as_number = src.ptr()->ob_type->tp_as_number) { if (PYBIND11_NB_BOOL(tp_as_number)) { res = (*PYBIND11_NB_BOOL(tp_as_number))(src.ptr()); } } #endif if (res == 0 || res == 1) { value = (res != 0); return true; } PyErr_Clear(); } return false; } static handle cast(bool src, return_value_policy /* policy */, handle /* parent */) { return handle(src ? Py_True : Py_False).inc_ref(); } PYBIND11_TYPE_CASTER(bool, const_name("bool")); private: // Test if an object is a NumPy boolean (without fetching the type). static inline bool is_numpy_bool(handle object) { const char *type_name = Py_TYPE(object.ptr())->tp_name; // Name changed to `numpy.bool` in NumPy 2, `numpy.bool_` is needed for 1.x support return std::strcmp("numpy.bool", type_name) == 0 || std::strcmp("numpy.bool_", type_name) == 0; } }; // Helper class for UTF-{8,16,32} C++ stl strings: template <typename StringType, bool IsView = false> struct string_caster { using CharT = typename StringType::value_type; // Simplify life by being able to assume standard char sizes (the standard only guarantees // minimums, but Python requires exact sizes) static_assert(!std::is_same<CharT, char>::value || sizeof(CharT) == 1, "Unsupported char size != 1"); #if defined(PYBIND11_HAS_U8STRING) static_assert(!std::is_same<CharT, char8_t>::value || sizeof(CharT) == 1, "Unsupported char8_t size != 1"); #endif static_assert(!std::is_same<CharT, char16_t>::value || sizeof(CharT) == 2, "Unsupported char16_t size != 2"); static_assert(!std::is_same<CharT, char32_t>::value || sizeof(CharT) == 4, "Unsupported char32_t size != 4"); // wchar_t can be either 16 bits (Windows) or 32 (everywhere else) static_assert(!std::is_same<CharT, wchar_t>::value || sizeof(CharT) == 2 || sizeof(CharT) == 4, "Unsupported wchar_t size != 2/4"); static constexpr size_t UTF_N = 8 * sizeof(CharT); bool load(handle src, bool) { handle load_src = src; if (!src) { return false; } if (!PyUnicode_Check(load_src.ptr())) { return load_raw(load_src); } // For UTF-8 we avoid the need for a temporary `bytes` object by using // `PyUnicode_AsUTF8AndSize`. if (UTF_N == 8) { Py_ssize_t size = -1; const auto *buffer = reinterpret_cast<const CharT *>(PyUnicode_AsUTF8AndSize(load_src.ptr(), &size)); if (!buffer) { PyErr_Clear(); return false; } value = StringType(buffer, static_cast<size_t>(size)); return true; } auto utfNbytes = reinterpret_steal<object>(PyUnicode_AsEncodedString(load_src.ptr(), UTF_N == 8 ? "utf-8" : UTF_N == 16 ? "utf-16" : "utf-32", nullptr)); if (!utfNbytes) { PyErr_Clear(); return false; } const auto *buffer = reinterpret_cast<const CharT *>(PYBIND11_BYTES_AS_STRING(utfNbytes.ptr())); size_t length = (size_t) PYBIND11_BYTES_SIZE(utfNbytes.ptr()) / sizeof(CharT); // Skip BOM for UTF-16/32 if (UTF_N > 8) { buffer++; length--; } value = StringType(buffer, length); // If we're loading a string_view we need to keep the encoded Python object alive: if (IsView) { loader_life_support::add_patient(utfNbytes); } return true; } static handle cast(const StringType &src, return_value_policy /* policy */, handle /* parent */) { const char *buffer = reinterpret_cast<const char *>(src.data()); auto nbytes = ssize_t(src.size() * sizeof(CharT)); handle s = decode_utfN(buffer, nbytes); if (!s) { throw error_already_set(); } return s; } PYBIND11_TYPE_CASTER(StringType, const_name(PYBIND11_STRING_NAME)); private: static handle decode_utfN(const char *buffer, ssize_t nbytes) { #if !defined(PYPY_VERSION) return UTF_N == 8 ? PyUnicode_DecodeUTF8(buffer, nbytes, nullptr) : UTF_N == 16 ? PyUnicode_DecodeUTF16(buffer, nbytes, nullptr, nullptr) : PyUnicode_DecodeUTF32(buffer, nbytes, nullptr, nullptr); #else // PyPy segfaults when on PyUnicode_DecodeUTF16 (and possibly on PyUnicode_DecodeUTF32 as // well), so bypass the whole thing by just passing the encoding as a string value, which // works properly: return PyUnicode_Decode(buffer, nbytes, UTF_N == 8 ? "utf-8" : UTF_N == 16 ? "utf-16" : "utf-32", nullptr); #endif } // When loading into a std::string or char*, accept a bytes/bytearray object as-is (i.e. // without any encoding/decoding attempt). For other C++ char sizes this is a no-op. // which supports loading a unicode from a str, doesn't take this path. template <typename C = CharT> bool load_raw(enable_if_t<std::is_same<C, char>::value, handle> src) { if (PYBIND11_BYTES_CHECK(src.ptr())) { // We were passed raw bytes; accept it into a std::string or char* // without any encoding attempt. const char *bytes = PYBIND11_BYTES_AS_STRING(src.ptr()); if (!bytes) { pybind11_fail("Unexpected PYBIND11_BYTES_AS_STRING() failure."); } value = StringType(bytes, (size_t) PYBIND11_BYTES_SIZE(src.ptr())); return true; } if (PyByteArray_Check(src.ptr())) { // We were passed a bytearray; accept it into a std::string or char* // without any encoding attempt. const char *bytearray = PyByteArray_AsString(src.ptr()); if (!bytearray) { pybind11_fail("Unexpected PyByteArray_AsString() failure."); } value = StringType(bytearray, (size_t) PyByteArray_Size(src.ptr())); return true; } return false; } template <typename C = CharT> bool load_raw(enable_if_t<!std::is_same<C, char>::value, handle>) { return false; } }; template <typename CharT, class Traits, class Allocator> struct type_caster<std::basic_string<CharT, Traits, Allocator>, enable_if_t<is_std_char_type<CharT>::value>> : string_caster<std::basic_string<CharT, Traits, Allocator>> {}; #ifdef PYBIND11_HAS_STRING_VIEW template <typename CharT, class Traits> struct type_caster<std::basic_string_view<CharT, Traits>, enable_if_t<is_std_char_type<CharT>::value>> : string_caster<std::basic_string_view<CharT, Traits>, true> {}; #endif // Type caster for C-style strings. We basically use a std::string type caster, but also add the // ability to use None as a nullptr char* (which the string caster doesn't allow). template <typename CharT> struct type_caster<CharT, enable_if_t<is_std_char_type<CharT>::value>> { using StringType = std::basic_string<CharT>; using StringCaster = make_caster<StringType>; StringCaster str_caster; bool none = false; CharT one_char = 0; public: bool load(handle src, bool convert) { if (!src) { return false; } if (src.is_none()) { // Defer accepting None to other overloads (if we aren't in convert mode): if (!convert) { return false; } none = true; return true; } return str_caster.load(src, convert); } static handle cast(const CharT *src, return_value_policy policy, handle parent) { if (src == nullptr) { return pybind11::none().release(); } return StringCaster::cast(StringType(src), policy, parent); } static handle cast(CharT src, return_value_policy policy, handle parent) { if (std::is_same<char, CharT>::value) { handle s = PyUnicode_DecodeLatin1((const char *) &src, 1, nullptr); if (!s) { throw error_already_set(); } return s; } return StringCaster::cast(StringType(1, src), policy, parent); } explicit operator CharT *() { return none ? nullptr : const_cast<CharT *>(static_cast<StringType &>(str_caster).c_str()); } explicit operator CharT &() { if (none) { throw value_error("Cannot convert None to a character"); } auto &value = static_cast<StringType &>(str_caster); size_t str_len = value.size(); if (str_len == 0) { throw value_error("Cannot convert empty string to a character"); } // If we're in UTF-8 mode, we have two possible failures: one for a unicode character that // is too high, and one for multiple unicode characters (caught later), so we need to // figure out how long the first encoded character is in bytes to distinguish between these // two errors. We also allow want to allow unicode characters U+0080 through U+00FF, as // those can fit into a single char value. if (StringCaster::UTF_N == 8 && str_len > 1 && str_len <= 4) { auto v0 = static_cast<unsigned char>(value[0]); // low bits only: 0-127 // 0b110xxxxx - start of 2-byte sequence // 0b1110xxxx - start of 3-byte sequence // 0b11110xxx - start of 4-byte sequence size_t char0_bytes = (v0 & 0x80) == 0 ? 1 : (v0 & 0xE0) == 0xC0 ? 2 : (v0 & 0xF0) == 0xE0 ? 3 : 4; if (char0_bytes == str_len) { // If we have a 128-255 value, we can decode it into a single char: if (char0_bytes == 2 && (v0 & 0xFC) == 0xC0) { // 0x110000xx 0x10xxxxxx one_char = static_cast<CharT>(((v0 & 3) << 6) + (static_cast<unsigned char>(value[1]) & 0x3F)); return one_char; } // Otherwise we have a single character, but it's > U+00FF throw value_error("Character code point not in range(0x100)"); } } // UTF-16 is much easier: we can only have a surrogate pair for values above U+FFFF, thus a // surrogate pair with total length 2 instantly indicates a range error (but not a "your // string was too long" error). else if (StringCaster::UTF_N == 16 && str_len == 2) { one_char = static_cast<CharT>(value[0]); if (one_char >= 0xD800 && one_char < 0xE000) { throw value_error("Character code point not in range(0x10000)"); } } if (str_len != 1) { throw value_error("Expected a character, but multi-character string found"); } one_char = value[0]; return one_char; } static constexpr auto name = const_name(PYBIND11_STRING_NAME); template <typename _T> using cast_op_type = pybind11::detail::cast_op_type<_T>; }; // Base implementation for std::tuple and std::pair template <template <typename...> class Tuple, typename... Ts> class tuple_caster { using type = Tuple<Ts...>; static constexpr auto size = sizeof...(Ts); using indices = make_index_sequence<size>; public: bool load(handle src, bool convert) { if (!isinstance<sequence>(src)) { return false; } const auto seq = reinterpret_borrow<sequence>(src); if (seq.size() != size) { return false; } return load_impl(seq, convert, indices{}); } template <typename T> static handle cast(T &&src, return_value_policy policy, handle parent) { return cast_impl(std::forward<T>(src), policy, parent, indices{}); } // copied from the PYBIND11_TYPE_CASTER macro template <typename T> static handle cast(T *src, return_value_policy policy, handle parent) { if (!src) { return none().release(); } if (policy == return_value_policy::take_ownership) { auto h = cast(std::move(*src), policy, parent); delete src; return h; } return cast(*src, policy, parent); } static constexpr auto name = const_name("tuple[") + ::pybind11::detail::concat(make_caster<Ts>::name...) + const_name("]"); template <typename T> using cast_op_type = type; explicit operator type() & { return implicit_cast(indices{}); } explicit operator type() && { return std::move(*this).implicit_cast(indices{}); } protected: template <size_t... Is> type implicit_cast(index_sequence<Is...>) & { return type(cast_op<Ts>(std::get<Is>(subcasters))...); } template <size_t... Is> type implicit_cast(index_sequence<Is...>) && { return type(cast_op<Ts>(std::move(std::get<Is>(subcasters)))...); } static constexpr bool load_impl(const sequence &, bool, index_sequence<>) { return true; } template <size_t... Is> bool load_impl(const sequence &seq, bool convert, index_sequence<Is...>) { #ifdef __cpp_fold_expressions if ((... || !std::get<Is>(subcasters).load(seq[Is], convert))) { return false; } #else for (bool r : {std::get<Is>(subcasters).load(seq[Is], convert)...}) { if (!r) { return false; } } #endif return true; } /* Implementation: Convert a C++ tuple into a Python tuple */ template <typename T, size_t... Is> static handle cast_impl(T &&src, return_value_policy policy, handle parent, index_sequence<Is...>) { PYBIND11_WORKAROUND_INCORRECT_MSVC_C4100(src, policy, parent); PYBIND11_WORKAROUND_INCORRECT_GCC_UNUSED_BUT_SET_PARAMETER(policy, parent); std::array<object, size> entries{{reinterpret_steal<object>( make_caster<Ts>::cast(std::get<Is>(std::forward<T>(src)), policy, parent))...}}; for (const auto &entry : entries) { if (!entry) { return handle(); } } tuple result(size); int counter = 0; for (auto &entry : entries) { PyTuple_SET_ITEM(result.ptr(), counter++, entry.release().ptr()); } return result.release(); } Tuple<make_caster<Ts>...> subcasters; }; template <typename T1, typename T2> class type_caster<std::pair<T1, T2>> : public tuple_caster<std::pair, T1, T2> {}; template <typename... Ts> class type_caster<std::tuple<Ts...>> : public tuple_caster<std::tuple, Ts...> {}; /// Helper class which abstracts away certain actions. Users can provide specializations for /// custom holders, but it's only necessary if the type has a non-standard interface. template <typename T> struct holder_helper { static auto get(const T &p) -> decltype(p.get()) { return p.get(); } }; /// Type caster for holder types like std::shared_ptr, etc. /// The SFINAE hook is provided to help work around the current lack of support /// for smart-pointer interoperability. Please consider it an implementation /// detail that may change in the future, as formal support for smart-pointer /// interoperability is added into pybind11. template <typename type, typename holder_type, typename SFINAE = void> struct copyable_holder_caster : public type_caster_base<type> { public: using base = type_caster_base<type>; static_assert(std::is_base_of<base, type_caster<type>>::value, "Holder classes are only supported for custom types"); using base::base; using base::cast; using base::typeinfo; using base::value; bool load(handle src, bool convert) { return base::template load_impl<copyable_holder_caster<type, holder_type>>(src, convert); } explicit operator type *() { return this->value; } // static_cast works around compiler error with MSVC 17 and CUDA 10.2 // see issue #2180 explicit operator type &() { return *(static_cast<type *>(this->value)); } explicit operator holder_type *() { return std::addressof(holder); } explicit operator holder_type &() { return holder; } static handle cast(const holder_type &src, return_value_policy, handle) { const auto *ptr = holder_helper<holder_type>::get(src); return type_caster_base<type>::cast_holder(ptr, &src); } protected: friend class type_caster_generic; void check_holder_compat() { if (typeinfo->default_holder) { throw cast_error("Unable to load a custom holder type from a default-holder instance"); } } bool load_value(value_and_holder &&v_h) { if (v_h.holder_constructed()) { value = v_h.value_ptr(); holder = v_h.template holder<holder_type>(); return true; } throw cast_error("Unable to cast from non-held to held instance (T& to Holder<T>) " #if !defined(PYBIND11_DETAILED_ERROR_MESSAGES) "(#define PYBIND11_DETAILED_ERROR_MESSAGES or compile in debug mode for " "type information)"); #else "of type '" + type_id<holder_type>() + "''"); #endif } template <typename T = holder_type, detail::enable_if_t<!std::is_constructible<T, const T &, type *>::value, int> = 0> bool try_implicit_casts(handle, bool) { return false; } template <typename T = holder_type, detail::enable_if_t<std::is_constructible<T, const T &, type *>::value, int> = 0> bool try_implicit_casts(handle src, bool convert) { for (auto &cast : typeinfo->implicit_casts) { copyable_holder_caster sub_caster(*cast.first); if (sub_caster.load(src, convert)) { value = cast.second(sub_caster.value); holder = holder_type(sub_caster.holder, (type *) value); return true; } } return false; } static bool try_direct_conversions(handle) { return false; } holder_type holder; }; /// Specialize for the common std::shared_ptr, so users don't need to template <typename T> class type_caster<std::shared_ptr<T>> : public copyable_holder_caster<T, std::shared_ptr<T>> {}; /// Type caster for holder types like std::unique_ptr. /// Please consider the SFINAE hook an implementation detail, as explained /// in the comment for the copyable_holder_caster. template <typename type, typename holder_type, typename SFINAE = void> struct move_only_holder_caster { static_assert(std::is_base_of<type_caster_base<type>, type_caster<type>>::value, "Holder classes are only supported for custom types"); static handle cast(holder_type &&src, return_value_policy, handle) { auto *ptr = holder_helper<holder_type>::get(src); return type_caster_base<type>::cast_holder(ptr, std::addressof(src)); } static constexpr auto name = type_caster_base<type>::name; }; template <typename type, typename deleter> class type_caster<std::unique_ptr<type, deleter>> : public move_only_holder_caster<type, std::unique_ptr<type, deleter>> {}; template <typename type, typename holder_type> using type_caster_holder = conditional_t<is_copy_constructible<holder_type>::value, copyable_holder_caster<type, holder_type>, move_only_holder_caster<type, holder_type>>; template <typename T, bool Value = false> struct always_construct_holder { static constexpr bool value = Value; }; /// Create a specialization for custom holder types (silently ignores std::shared_ptr) #define PYBIND11_DECLARE_HOLDER_TYPE(type, holder_type, ...) \ PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE) \ namespace detail { \ template <typename type> \ struct always_construct_holder<holder_type> : always_construct_holder<void, ##__VA_ARGS__> { \ }; \ template <typename type> \ class type_caster<holder_type, enable_if_t<!is_shared_ptr<holder_type>::value>> \ : public type_caster_holder<type, holder_type> {}; \ } \ PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE) // PYBIND11_DECLARE_HOLDER_TYPE holder types: template <typename base, typename holder> struct is_holder_type : std::is_base_of<detail::type_caster_holder<base, holder>, detail::type_caster<holder>> {}; // Specialization for always-supported unique_ptr holders: template <typename base, typename deleter> struct is_holder_type<base, std::unique_ptr<base, deleter>> : std::true_type {}; #ifdef PYBIND11_DISABLE_HANDLE_TYPE_NAME_DEFAULT_IMPLEMENTATION // See PR #4888 // This leads to compilation errors if a specialization is missing. template <typename T> struct handle_type_name; #else template <typename T> struct handle_type_name { static constexpr auto name = const_name<T>(); }; #endif template <> struct handle_type_name<object> { static constexpr auto name = const_name("object"); }; template <> struct handle_type_name<list> { static constexpr auto name = const_name("list"); }; template <> struct handle_type_name<dict> { static constexpr auto name = const_name("dict"); }; template <> struct handle_type_name<anyset> { static constexpr auto name = const_name("Union[set, frozenset]"); }; template <> struct handle_type_name<set> { static constexpr auto name = const_name("set"); }; template <> struct handle_type_name<frozenset> { static constexpr auto name = const_name("frozenset"); }; template <> struct handle_type_name<str> { static constexpr auto name = const_name("str"); }; template <> struct handle_type_name<tuple> { static constexpr auto name = const_name("tuple"); }; template <> struct handle_type_name<bool_> { static constexpr auto name = const_name("bool"); }; template <> struct handle_type_name<bytes> { static constexpr auto name = const_name(PYBIND11_BYTES_NAME); }; template <> struct handle_type_name<buffer> { static constexpr auto name = const_name("Buffer"); }; template <> struct handle_type_name<int_> { static constexpr auto name = const_name("int"); }; template <> struct handle_type_name<iterable> { static constexpr auto name = const_name("Iterable"); }; template <> struct handle_type_name<iterator> { static constexpr auto name = const_name("Iterator"); }; template <> struct handle_type_name<float_> { static constexpr auto name = const_name("float"); }; template <> struct handle_type_name<function> { static constexpr auto name = const_name("Callable"); }; template <> struct handle_type_name<handle> { static constexpr auto name = handle_type_name<object>::name; }; template <> struct handle_type_name<none> { static constexpr auto name = const_name("None"); }; template <> struct handle_type_name<sequence> { static constexpr auto name = const_name("Sequence"); }; template <> struct handle_type_name<bytearray> { static constexpr auto name = const_name("bytearray"); }; template <> struct handle_type_name<memoryview> { static constexpr auto name = const_name("memoryview"); }; template <> struct handle_type_name<slice> { static constexpr auto name = const_name("slice"); }; template <> struct handle_type_name<type> { static constexpr auto name = const_name("type"); }; template <> struct handle_type_name<capsule> { static constexpr auto name = const_name("capsule"); }; template <> struct handle_type_name<ellipsis> { static constexpr auto name = const_name("ellipsis"); }; template <> struct handle_type_name<weakref> { static constexpr auto name = const_name("weakref"); }; template <> struct handle_type_name<args> { static constexpr auto name = const_name("*args"); }; template <> struct handle_type_name<kwargs> { static constexpr auto name = const_name("**kwargs"); }; template <> struct handle_type_name<obj_attr_accessor> { static constexpr auto name = const_name<obj_attr_accessor>(); }; template <> struct handle_type_name<str_attr_accessor> { static constexpr auto name = const_name<str_attr_accessor>(); }; template <> struct handle_type_name<item_accessor> { static constexpr auto name = const_name<item_accessor>(); }; template <> struct handle_type_name<sequence_accessor> { static constexpr auto name = const_name<sequence_accessor>(); }; template <> struct handle_type_name<list_accessor> { static constexpr auto name = const_name<list_accessor>(); }; template <> struct handle_type_name<tuple_accessor> { static constexpr auto name = const_name<tuple_accessor>(); }; template <typename type> struct pyobject_caster { template <typename T = type, enable_if_t<std::is_same<T, handle>::value, int> = 0> pyobject_caster() : value() {} // `type` may not be default constructible (e.g. frozenset, anyset). Initializing `value` // to a nil handle is safe since it will only be accessed if `load` succeeds. template <typename T = type, enable_if_t<std::is_base_of<object, T>::value, int> = 0> pyobject_caster() : value(reinterpret_steal<type>(handle())) {} template <typename T = type, enable_if_t<std::is_same<T, handle>::value, int> = 0> bool load(handle src, bool /* convert */) { value = src; return static_cast<bool>(value); } template <typename T = type, enable_if_t<std::is_base_of<object, T>::value, int> = 0> bool load(handle src, bool /* convert */) { if (!isinstance<type>(src)) { return false; } value = reinterpret_borrow<type>(src); return true; } static handle cast(const handle &src, return_value_policy /* policy */, handle /* parent */) { return src.inc_ref(); } PYBIND11_TYPE_CASTER(type, handle_type_name<type>::name); }; template <typename T> class type_caster<T, enable_if_t<is_pyobject<T>::value>> : public pyobject_caster<T> {}; // Our conditions for enabling moving are quite restrictive: // At compile time: // - T needs to be a non-const, non-pointer, non-reference type // - type_caster<T>::operator T&() must exist // - the type must be move constructible (obviously) // At run-time: // - if the type is non-copy-constructible, the object must be the sole owner of the type (i.e. it // must have ref_count() == 1)h // If any of the above are not satisfied, we fall back to copying. template <typename T> using move_is_plain_type = satisfies_none_of<T, std::is_void, std::is_pointer, std::is_reference, std::is_const>; template <typename T, typename SFINAE = void> struct move_always : std::false_type {}; template <typename T> struct move_always< T, enable_if_t< all_of<move_is_plain_type<T>, negation<is_copy_constructible<T>>, is_move_constructible<T>, std::is_same<decltype(std::declval<make_caster<T>>().operator T &()), T &>>::value>> : std::true_type {}; template <typename T, typename SFINAE = void> struct move_if_unreferenced : std::false_type {}; template <typename T> struct move_if_unreferenced< T, enable_if_t< all_of<move_is_plain_type<T>, negation<move_always<T>>, is_move_constructible<T>, std::is_same<decltype(std::declval<make_caster<T>>().operator T &()), T &>>::value>> : std::true_type {}; template <typename T> using move_never = none_of<move_always<T>, move_if_unreferenced<T>>; // Detect whether returning a `type` from a cast on type's type_caster is going to result in a // reference or pointer to a local variable of the type_caster. Basically, only // non-reference/pointer `type`s and reference/pointers from a type_caster_generic are safe; // everything else returns a reference/pointer to a local variable. template <typename type> using cast_is_temporary_value_reference = bool_constant<(std::is_reference<type>::value || std::is_pointer<type>::value) && !std::is_base_of<type_caster_generic, make_caster<type>>::value && !std::is_same<intrinsic_t<type>, void>::value>; // When a value returned from a C++ function is being cast back to Python, we almost always want to // force `policy = move`, regardless of the return value policy the function/method was declared // with. template <typename Return, typename SFINAE = void> struct return_value_policy_override { static return_value_policy policy(return_value_policy p) { return p; } }; template <typename Return> struct return_value_policy_override< Return, detail::enable_if_t<std::is_base_of<type_caster_generic, make_caster<Return>>::value, void>> { static return_value_policy policy(return_value_policy p) { return !std::is_lvalue_reference<Return>::value && !std::is_pointer<Return>::value ? return_value_policy::move : p; } }; // Basic python -> C++ casting; throws if casting fails template <typename T, typename SFINAE> type_caster<T, SFINAE> &load_type(type_caster<T, SFINAE> &conv, const handle &handle) { static_assert(!detail::is_pyobject<T>::value, "Internal error: type_caster should only be used for C++ types"); if (!conv.load(handle, true)) { #if !defined(PYBIND11_DETAILED_ERROR_MESSAGES) throw cast_error( "Unable to cast Python instance of type " + str(type::handle_of(handle)).cast<std::string>() + " to C++ type '?' (#define " "PYBIND11_DETAILED_ERROR_MESSAGES or compile in debug mode for details)"); #else throw cast_error("Unable to cast Python instance of type " + str(type::handle_of(handle)).cast<std::string>() + " to C++ type '" + type_id<T>() + "'"); #endif } return conv; } // Wrapper around the above that also constructs and returns a type_caster template <typename T> make_caster<T> load_type(const handle &handle) { make_caster<T> conv; load_type(conv, handle); return conv; } PYBIND11_NAMESPACE_END(detail) // pytype -> C++ type template <typename T, detail::enable_if_t<!detail::is_pyobject<T>::value && !detail::is_same_ignoring_cvref<T, PyObject *>::value, int> = 0> T cast(const handle &handle) { using namespace detail; static_assert(!cast_is_temporary_value_reference<T>::value, "Unable to cast type to reference: value is local to type caster"); return cast_op<T>(load_type<T>(handle)); } // pytype -> pytype (calls converting constructor) template <typename T, detail::enable_if_t<detail::is_pyobject<T>::value, int> = 0> T cast(const handle &handle) { return T(reinterpret_borrow<object>(handle)); } // Note that `cast<PyObject *>(obj)` increments the reference count of `obj`. // This is necessary for the case that `obj` is a temporary, and could // not possibly be different, given // 1. the established convention that the passed `handle` is borrowed, and // 2. we don't want to force all generic code using `cast<T>()` to special-case // handling of `T` = `PyObject *` (to increment the reference count there). // It is the responsibility of the caller to ensure that the reference count // is decremented. template <typename T, typename Handle, detail::enable_if_t<detail::is_same_ignoring_cvref<T, PyObject *>::value && detail::is_same_ignoring_cvref<Handle, handle>::value, int> = 0> T cast(Handle &&handle) { return handle.inc_ref().ptr(); } // To optimize way an inc_ref/dec_ref cycle: template <typename T, typename Object, detail::enable_if_t<detail::is_same_ignoring_cvref<T, PyObject *>::value && detail::is_same_ignoring_cvref<Object, object>::value, int> = 0> T cast(Object &&obj) { return obj.release().ptr(); } // C++ type -> py::object template <typename T, detail::enable_if_t<!detail::is_pyobject<T>::value, int> = 0> object cast(T &&value, return_value_policy policy = return_value_policy::automatic_reference, handle parent = handle()) { using no_ref_T = typename std::remove_reference<T>::type; if (policy == return_value_policy::automatic) { policy = std::is_pointer<no_ref_T>::value ? return_value_policy::take_ownership : std::is_lvalue_reference<T>::value ? return_value_policy::copy : return_value_policy::move; } else if (policy == return_value_policy::automatic_reference) { policy = std::is_pointer<no_ref_T>::value ? return_value_policy::reference : std::is_lvalue_reference<T>::value ? return_value_policy::copy : return_value_policy::move; } return reinterpret_steal<object>( detail::make_caster<T>::cast(std::forward<T>(value), policy, parent)); } template <typename T> T handle::cast() const { return pybind11::cast<T>(*this); } template <> inline void handle::cast() const { return; } template <typename T> detail::enable_if_t<!detail::move_never<T>::value, T> move(object &&obj) { if (obj.ref_count() > 1) { #if !defined(PYBIND11_DETAILED_ERROR_MESSAGES) throw cast_error( "Unable to cast Python " + str(type::handle_of(obj)).cast<std::string>() + " instance to C++ rvalue: instance has multiple references" " (#define PYBIND11_DETAILED_ERROR_MESSAGES or compile in debug mode for details)"); #else throw cast_error("Unable to move from Python " + str(type::handle_of(obj)).cast<std::string>() + " instance to C++ " + type_id<T>() + " instance: instance has multiple references"); #endif } // Move into a temporary and return that, because the reference may be a local value of `conv` T ret = std::move(detail::load_type<T>(obj).operator T &()); return ret; } // Calling cast() on an rvalue calls pybind11::cast with the object rvalue, which does: // - If we have to move (because T has no copy constructor), do it. This will fail if the moved // object has multiple references, but trying to copy will fail to compile. // - If both movable and copyable, check ref count: if 1, move; otherwise copy // - Otherwise (not movable), copy. template <typename T> detail::enable_if_t<!detail::is_pyobject<T>::value && detail::move_always<T>::value, T> cast(object &&object) { return move<T>(std::move(object)); } template <typename T> detail::enable_if_t<!detail::is_pyobject<T>::value && detail::move_if_unreferenced<T>::value, T> cast(object &&object) { if (object.ref_count() > 1) { return cast<T>(object); } return move<T>(std::move(object)); } template <typename T> detail::enable_if_t<!detail::is_pyobject<T>::value && detail::move_never<T>::value, T> cast(object &&object) { return cast<T>(object); } // pytype rvalue -> pytype (calls converting constructor) template <typename T> detail::enable_if_t<detail::is_pyobject<T>::value, T> cast(object &&object) { return T(std::move(object)); } template <typename T> T object::cast() const & { return pybind11::cast<T>(*this); } template <typename T> T object::cast() && { return pybind11::cast<T>(std::move(*this)); } template <> inline void object::cast() const & { return; } template <> inline void object::cast() && { return; } PYBIND11_NAMESPACE_BEGIN(detail) // Declared in pytypes.h: template <typename T, enable_if_t<!is_pyobject<T>::value, int>> object object_or_cast(T &&o) { return pybind11::cast(std::forward<T>(o)); } // Placeholder type for the unneeded (and dead code) static variable in the // PYBIND11_OVERRIDE_OVERRIDE macro struct override_unused {}; template <typename ret_type> using override_caster_t = conditional_t<cast_is_temporary_value_reference<ret_type>::value, make_caster<ret_type>, override_unused>; // Trampoline use: for reference/pointer types to value-converted values, we do a value cast, then // store the result in the given variable. For other types, this is a no-op. template <typename T> enable_if_t<cast_is_temporary_value_reference<T>::value, T> cast_ref(object &&o, make_caster<T> &caster) { return cast_op<T>(load_type(caster, o)); } template <typename T> enable_if_t<!cast_is_temporary_value_reference<T>::value, T> cast_ref(object &&, override_unused &) { pybind11_fail("Internal error: cast_ref fallback invoked"); } // Trampoline use: Having a pybind11::cast with an invalid reference type is going to // static_assert, even though if it's in dead code, so we provide a "trampoline" to pybind11::cast // that only does anything in cases where pybind11::cast is valid. template <typename T> enable_if_t<cast_is_temporary_value_reference<T>::value, T> cast_safe(object &&) { pybind11_fail("Internal error: cast_safe fallback invoked"); } template <typename T> enable_if_t<std::is_void<T>::value, void> cast_safe(object &&) {} template <typename T> enable_if_t<detail::none_of<cast_is_temporary_value_reference<T>, std::is_void<T>>::value, T> cast_safe(object &&o) { return pybind11::cast<T>(std::move(o)); } PYBIND11_NAMESPACE_END(detail) // The overloads could coexist, i.e. the #if is not strictly speaking needed, // but it is an easy minor optimization. #if !defined(PYBIND11_DETAILED_ERROR_MESSAGES) inline cast_error cast_error_unable_to_convert_call_arg(const std::string &name) { return cast_error("Unable to convert call argument '" + name + "' to Python object (#define " "PYBIND11_DETAILED_ERROR_MESSAGES or compile in debug mode for details)"); } #else inline cast_error cast_error_unable_to_convert_call_arg(const std::string &name, const std::string &type) { return cast_error("Unable to convert call argument '" + name + "' of type '" + type + "' to Python object"); } #endif template <return_value_policy policy = return_value_policy::automatic_reference> tuple make_tuple() { return tuple(0); } template <return_value_policy policy = return_value_policy::automatic_reference, typename... Args> tuple make_tuple(Args &&...args_) { constexpr size_t size = sizeof...(Args); std::array<object, size> args{{reinterpret_steal<object>( detail::make_caster<Args>::cast(std::forward<Args>(args_), policy, nullptr))...}}; for (size_t i = 0; i < args.size(); i++) { if (!args[i]) { #if !defined(PYBIND11_DETAILED_ERROR_MESSAGES) throw cast_error_unable_to_convert_call_arg(std::to_string(i)); #else std::array<std::string, size> argtypes{{type_id<Args>()...}}; throw cast_error_unable_to_convert_call_arg(std::to_string(i), argtypes[i]); #endif } } tuple result(size); int counter = 0; for (auto &arg_value : args) { PyTuple_SET_ITEM(result.ptr(), counter++, arg_value.release().ptr()); } return result; } /// \ingroup annotations /// Annotation for arguments struct arg { /// Constructs an argument with the name of the argument; if null or omitted, this is a /// positional argument. constexpr explicit arg(const char *name = nullptr) : name(name), flag_noconvert(false), flag_none(true) {} /// Assign a value to this argument template <typename T> arg_v operator=(T &&value) const; /// Indicate that the type should not be converted in the type caster arg &noconvert(bool flag = true) { flag_noconvert = flag; return *this; } /// Indicates that the argument should/shouldn't allow None (e.g. for nullable pointer args) arg &none(bool flag = true) { flag_none = flag; return *this; } const char *name; ///< If non-null, this is a named kwargs argument bool flag_noconvert : 1; ///< If set, do not allow conversion (requires a supporting type ///< caster!) bool flag_none : 1; ///< If set (the default), allow None to be passed to this argument }; /// \ingroup annotations /// Annotation for arguments with values struct arg_v : arg { private: template <typename T> arg_v(arg &&base, T &&x, const char *descr = nullptr) : arg(base), value(reinterpret_steal<object>(detail::make_caster<T>::cast( std::forward<T>(x), return_value_policy::automatic, {}))), descr(descr) #if defined(PYBIND11_DETAILED_ERROR_MESSAGES) , type(type_id<T>()) #endif { // Workaround! See: // https://github.com/pybind/pybind11/issues/2336 // https://github.com/pybind/pybind11/pull/2685#issuecomment-731286700 if (PyErr_Occurred()) { PyErr_Clear(); } } public: /// Direct construction with name, default, and description template <typename T> arg_v(const char *name, T &&x, const char *descr = nullptr) : arg_v(arg(name), std::forward<T>(x), descr) {} /// Called internally when invoking `py::arg("a") = value` template <typename T> arg_v(const arg &base, T &&x, const char *descr = nullptr) : arg_v(arg(base), std::forward<T>(x), descr) {} /// Same as `arg::noconvert()`, but returns *this as arg_v&, not arg& arg_v &noconvert(bool flag = true) { arg::noconvert(flag); return *this; } /// Same as `arg::nonone()`, but returns *this as arg_v&, not arg& arg_v &none(bool flag = true) { arg::none(flag); return *this; } /// The default value object value; /// The (optional) description of the default value const char *descr; #if defined(PYBIND11_DETAILED_ERROR_MESSAGES) /// The C++ type name of the default value (only available when compiled in debug mode) std::string type; #endif }; /// \ingroup annotations /// Annotation indicating that all following arguments are keyword-only; the is the equivalent of /// an unnamed '*' argument struct kw_only {}; /// \ingroup annotations /// Annotation indicating that all previous arguments are positional-only; the is the equivalent of /// an unnamed '/' argument (in Python 3.8) struct pos_only {}; template <typename T> arg_v arg::operator=(T &&value) const { return {*this, std::forward<T>(value)}; } /// Alias for backward compatibility -- to be removed in version 2.0 template <typename /*unused*/> using arg_t = arg_v; inline namespace literals { /** \rst String literal version of `arg` \endrst */ constexpr arg #if !defined(__clang__) && defined(__GNUC__) && __GNUC__ < 5 operator"" _a // gcc 4.8.5 insists on having a space (hard error). #else operator""_a // clang 17 generates a deprecation warning if there is a space. #endif (const char *name, size_t) { return arg(name); } } // namespace literals PYBIND11_NAMESPACE_BEGIN(detail) template <typename T> using is_kw_only = std::is_same<intrinsic_t<T>, kw_only>; template <typename T> using is_pos_only = std::is_same<intrinsic_t<T>, pos_only>; // forward declaration (definition in attr.h) struct function_record; /// Internal data associated with a single function call struct function_call { function_call(const function_record &f, handle p); // Implementation in attr.h /// The function data: const function_record &func; /// Arguments passed to the function: std::vector<handle> args; /// The `convert` value the arguments should be loaded with std::vector<bool> args_convert; /// Extra references for the optional `py::args` and/or `py::kwargs` arguments (which, if /// present, are also in `args` but without a reference). object args_ref, kwargs_ref; /// The parent, if any handle parent; /// If this is a call to an initializer, this argument contains `self` handle init_self; }; /// Helper class which loads arguments for C++ functions called from Python template <typename... Args> class argument_loader { using indices = make_index_sequence<sizeof...(Args)>; template <typename Arg> using argument_is_args = std::is_same<intrinsic_t<Arg>, args>; template <typename Arg> using argument_is_kwargs = std::is_same<intrinsic_t<Arg>, kwargs>; // Get kwargs argument position, or -1 if not present: static constexpr auto kwargs_pos = constexpr_last<argument_is_kwargs, Args...>(); static_assert(kwargs_pos == -1 || kwargs_pos == (int) sizeof...(Args) - 1, "py::kwargs is only permitted as the last argument of a function"); public: static constexpr bool has_kwargs = kwargs_pos != -1; // py::args argument position; -1 if not present. static constexpr int args_pos = constexpr_last<argument_is_args, Args...>(); static_assert(args_pos == -1 || args_pos == constexpr_first<argument_is_args, Args...>(), "py::args cannot be specified more than once"); static constexpr auto arg_names = ::pybind11::detail::concat(type_descr(make_caster<Args>::name)...); bool load_args(function_call &call) { return load_impl_sequence(call, indices{}); } template <typename Return, typename Guard, typename Func> // NOLINTNEXTLINE(readability-const-return-type) enable_if_t<!std::is_void<Return>::value, Return> call(Func &&f) && { return std::move(*this).template call_impl<remove_cv_t<Return>>( std::forward<Func>(f), indices{}, Guard{}); } template <typename Return, typename Guard, typename Func> enable_if_t<std::is_void<Return>::value, void_type> call(Func &&f) && { std::move(*this).template call_impl<remove_cv_t<Return>>( std::forward<Func>(f), indices{}, Guard{}); return void_type(); } private: static bool load_impl_sequence(function_call &, index_sequence<>) { return true; } template <size_t... Is> bool load_impl_sequence(function_call &call, index_sequence<Is...>) { #ifdef __cpp_fold_expressions if ((... || !std::get<Is>(argcasters).load(call.args[Is], call.args_convert[Is]))) { return false; } #else for (bool r : {std::get<Is>(argcasters).load(call.args[Is], call.args_convert[Is])...}) { if (!r) { return false; } } #endif return true; } template <typename Return, typename Func, size_t... Is, typename Guard> Return call_impl(Func &&f, index_sequence<Is...>, Guard &&) && { return std::forward<Func>(f)(cast_op<Args>(std::move(std::get<Is>(argcasters)))...); } std::tuple<make_caster<Args>...> argcasters; }; /// Helper class which collects only positional arguments for a Python function call. /// A fancier version below can collect any argument, but this one is optimal for simple calls. template <return_value_policy policy> class simple_collector { public: template <typename... Ts> explicit simple_collector(Ts &&...values) : m_args(pybind11::make_tuple<policy>(std::forward<Ts>(values)...)) {} const tuple &args() const & { return m_args; } dict kwargs() const { return {}; } tuple args() && { return std::move(m_args); } /// Call a Python function and pass the collected arguments object call(PyObject *ptr) const { PyObject *result = PyObject_CallObject(ptr, m_args.ptr()); if (!result) { throw error_already_set(); } return reinterpret_steal<object>(result); } private: tuple m_args; }; /// Helper class which collects positional, keyword, * and ** arguments for a Python function call template <return_value_policy policy> class unpacking_collector { public: template <typename... Ts> explicit unpacking_collector(Ts &&...values) { // Tuples aren't (easily) resizable so a list is needed for collection, // but the actual function call strictly requires a tuple. auto args_list = list(); using expander = int[]; (void) expander{0, (process(args_list, std::forward<Ts>(values)), 0)...}; m_args = std::move(args_list); } const tuple &args() const & { return m_args; } const dict &kwargs() const & { return m_kwargs; } tuple args() && { return std::move(m_args); } dict kwargs() && { return std::move(m_kwargs); } /// Call a Python function and pass the collected arguments object call(PyObject *ptr) const { PyObject *result = PyObject_Call(ptr, m_args.ptr(), m_kwargs.ptr()); if (!result) { throw error_already_set(); } return reinterpret_steal<object>(result); } private: template <typename T> void process(list &args_list, T &&x) { auto o = reinterpret_steal<object>( detail::make_caster<T>::cast(std::forward<T>(x), policy, {})); if (!o) { #if !defined(PYBIND11_DETAILED_ERROR_MESSAGES) throw cast_error_unable_to_convert_call_arg(std::to_string(args_list.size())); #else throw cast_error_unable_to_convert_call_arg(std::to_string(args_list.size()), type_id<T>()); #endif } args_list.append(std::move(o)); } void process(list &args_list, detail::args_proxy ap) { for (auto a : ap) { args_list.append(a); } } void process(list & /*args_list*/, arg_v a) { if (!a.name) { #if !defined(PYBIND11_DETAILED_ERROR_MESSAGES) nameless_argument_error(); #else nameless_argument_error(a.type); #endif } if (m_kwargs.contains(a.name)) { #if !defined(PYBIND11_DETAILED_ERROR_MESSAGES) multiple_values_error(); #else multiple_values_error(a.name); #endif } if (!a.value) { #if !defined(PYBIND11_DETAILED_ERROR_MESSAGES) throw cast_error_unable_to_convert_call_arg(a.name); #else throw cast_error_unable_to_convert_call_arg(a.name, a.type); #endif } m_kwargs[a.name] = std::move(a.value); } void process(list & /*args_list*/, detail::kwargs_proxy kp) { if (!kp) { return; } for (auto k : reinterpret_borrow<dict>(kp)) { if (m_kwargs.contains(k.first)) { #if !defined(PYBIND11_DETAILED_ERROR_MESSAGES) multiple_values_error(); #else multiple_values_error(str(k.first)); #endif } m_kwargs[k.first] = k.second; } } [[noreturn]] static void nameless_argument_error() { throw type_error( "Got kwargs without a name; only named arguments " "may be passed via py::arg() to a python function call. " "(#define PYBIND11_DETAILED_ERROR_MESSAGES or compile in debug mode for details)"); } [[noreturn]] static void nameless_argument_error(const std::string &type) { throw type_error("Got kwargs without a name of type '" + type + "'; only named " "arguments may be passed via py::arg() to a python function call. "); } [[noreturn]] static void multiple_values_error() { throw type_error( "Got multiple values for keyword argument " "(#define PYBIND11_DETAILED_ERROR_MESSAGES or compile in debug mode for details)"); } [[noreturn]] static void multiple_values_error(const std::string &name) { throw type_error("Got multiple values for keyword argument '" + name + "'"); } private: tuple m_args; dict m_kwargs; }; // [workaround(intel)] Separate function required here // We need to put this into a separate function because the Intel compiler // fails to compile enable_if_t<!all_of<is_positional<Args>...>::value> // (tested with ICC 2021.1 Beta 20200827). template <typename... Args> constexpr bool args_are_all_positional() { return all_of<is_positional<Args>...>::value; } /// Collect only positional arguments for a Python function call template <return_value_policy policy, typename... Args, typename = enable_if_t<args_are_all_positional<Args...>()>> simple_collector<policy> collect_arguments(Args &&...args) { return simple_collector<policy>(std::forward<Args>(args)...); } /// Collect all arguments, including keywords and unpacking (only instantiated when needed) template <return_value_policy policy, typename... Args, typename = enable_if_t<!args_are_all_positional<Args...>()>> unpacking_collector<policy> collect_arguments(Args &&...args) { // Following argument order rules for generalized unpacking according to PEP 448 static_assert(constexpr_last<is_positional, Args...>() < constexpr_first<is_keyword_or_ds, Args...>() && constexpr_last<is_s_unpacking, Args...>() < constexpr_first<is_ds_unpacking, Args...>(), "Invalid function call: positional args must precede keywords and ** unpacking; " "* unpacking must precede ** unpacking"); return unpacking_collector<policy>(std::forward<Args>(args)...); } template <typename Derived> template <return_value_policy policy, typename... Args> object object_api<Derived>::operator()(Args &&...args) const { #ifndef NDEBUG if (!PyGILState_Check()) { pybind11_fail("pybind11::object_api<>::operator() PyGILState_Check() failure."); } #endif return detail::collect_arguments<policy>(std::forward<Args>(args)...).call(derived().ptr()); } template <typename Derived> template <return_value_policy policy, typename... Args> object object_api<Derived>::call(Args &&...args) const { return operator()<policy>(std::forward<Args>(args)...); } PYBIND11_NAMESPACE_END(detail) template <typename T> handle type::handle_of() { static_assert(std::is_base_of<detail::type_caster_generic, detail::make_caster<T>>::value, "py::type::of<T> only supports the case where T is a registered C++ types."); return detail::get_type_handle(typeid(T), true); } #define PYBIND11_MAKE_OPAQUE(...) \ PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE) \ namespace detail { \ template <> \ class type_caster<__VA_ARGS__> : public type_caster_base<__VA_ARGS__> {}; \ } \ PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE) /// Lets you pass a type containing a `,` through a macro parameter without needing a separate /// typedef, e.g.: /// `PYBIND11_OVERRIDE(PYBIND11_TYPE(ReturnType<A, B>), PYBIND11_TYPE(Parent<C, D>), f, arg)` #define PYBIND11_TYPE(...) __VA_ARGS__ PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)
Memory