�
��g� � �� � d dl mZ d dlmZ d dlmZ d dlmZmZm Z m
Z
mZmZm
Z
mZmZmZmZmZmZmZ d dlmZ d dlmZ d dlmZmZmZmZmZmZ d dl m!Z!m"Z"m#Z#m$Z$m%Z% d d l&m'Z' d d
l(m)Z) d dl*m+Z+ d dl,m-Z- d d
l.m/Z0m1Z2 d dl3m4Z4m5Z5m6Z6m7Z7m8Z8m9Z9 d dl:m;Z; d dl<m=Z=m>Z>m?Z? d dl@mAZA d dlBmCZC d dlDmEZE d dlFmGZGmHZHmIZI d dlJmKZK d dlLmMZMmNZNmOZOmPZPmQZQmRZR d dlSmTZT d dlUmVZV d dlWmXZXmYZYmZZZm[Z[m\Z\ d dl]m^Z^m_Z_m`Z` d dlambZbmcZc d dldmeZe d dlfmgZgmhZh d dlimjZj d dlkmlZl d d lmmnZnmoZompZp d d!lqmrZr d d"lsmtZtmuZu d d#lvmwZw d d$lxmyZymzZzm{Z{m|Z| d d%l}m~Z~ d d&lZg d'd'fd(�Z�d)� Z�d*� Z�d+� Z�d,� Z�d-� Z�dLd.�Z�d/ed'd'd0fd1�Z�d2� Z�d3� Z�dMd4�Z�dNd5�Z�d6� Z�dNd7�Z�d8� Z�dOd9�Z�d:� Z�d;� Z�d<� Z�dPd?�Z� dQdB�Z�dRdC�Z�ej� fdD�Z�dSdE�Z�dOdF�Z� ewdGdHdI�J� � e0� � Z/ ewdKdHdI�J� � e2� � Z1d&S )T� )�defaultdict)�Product)�Sum)�Basic�S�Add�Mul�Pow�Symbol�sympify�expand_func�Function�Dummy�Expr�factor_terms�expand_power_exp�Eq)� factor_nc)�global_parameters)�
expand_log� count_ops�_mexpand�nfloat�
expand_mul�expand)�Float�I�pi�Rational�equal_valued)�
Relational)� Transform)�ordered)�_sympify)� bottom_up�walk)�gamma�exp�sqrt�log� exp_polar�re)�CombinatorialFunction)�
unpolarify�Abs�sign)�ExpBase)�HyperbolicFunction)�ceiling)� Piecewise�piecewise_fold�piecewise_simplify)�TrigonometricFunction)�
BesselBase�besselj�besseli�besselk�bessely�jn)�KroneckerDelta)�Integral)�
MatrixExpr�MatAdd�MatMul�MatPow�MatrixSymbol)�together�cancel�factor)�
_is_sum_surds�_minimal_polynomial_sq)�combsimp)�sub_pre�sub_post)�hyperexpand)�powsimp)�radsimp�fraction�collect_abs)�
sqrtdenest)�trigsimp�exptrigsimp)�
deprecated)�has_variety�sift�subsets�iterable)�as_intNFc � � t | � � } |rt t | |� � |� � S t | |� � S )a�
Separates variables in an expression, if possible. By
default, it separates with respect to all symbols in an
expression and collects constant coefficients that are
independent of symbols.
Explanation
===========
If ``dict=True`` then the separated terms will be returned
in a dictionary keyed to their corresponding symbols.
By default, all symbols in the expression will appear as
keys; if symbols are provided, then all those symbols will
be used as keys, and any terms in the expression containing
other symbols or non-symbols will be returned keyed to the
string 'coeff'. (Passing None for symbols will return the
expression in a dictionary keyed to 'coeff'.)
If ``force=True``, then bases of powers will be separated regardless
of assumptions on the symbols involved.
Notes
=====
The order of the factors is determined by Mul, so that the
separated expressions may not necessarily be grouped together.
Although factoring is necessary to separate variables in some
expressions, it is not necessary in all cases, so one should not
count on the returned factors being factored.
Examples
========
>>> from sympy.abc import x, y, z, alpha
>>> from sympy import separatevars, sin
>>> separatevars((x*y)**y)
(x*y)**y
>>> separatevars((x*y)**y, force=True)
x**y*y**y
>>> e = 2*x**2*z*sin(y)+2*z*x**2
>>> separatevars(e)
2*x**2*z*(sin(y) + 1)
>>> separatevars(e, symbols=(x, y), dict=True)
{'coeff': 2*z, x: x**2, y: sin(y) + 1}
>>> separatevars(e, [x, y, alpha], dict=True)
{'coeff': 2*z, alpha: 1, x: x**2, y: sin(y) + 1}
If the expression is not really separable, or is only partially
separable, separatevars will do the best it can to separate it
by using factoring.
>>> separatevars(x + x*y - 3*x**2)
-x*(3*x - y - 1)
If the expression is not separable then expr is returned unchanged
or (if dict=True) then None is returned.
>>> eq = 2*x + y*sin(x)
>>> separatevars(eq) == eq
True
>>> separatevars(2*x + y*sin(x), symbols=(x, y), dict=True) is None
True
)r �_separatevars_dict�
_separatevars)�expr�symbols�dict�forces �g/home/asafur/pinokio/api/open-webui.git/app/env/lib/python3.11/site-packages/sympy/simplify/simplify.py�separatevarsrc 1 sB � �F �4�=�=�D�� *�!�-��e�"<�"<�g�F�F�F��T�5�)�)�)� c �� � t | t � � r_| j d }|j rK|j sDt |d|�� � }|�.t
t | j |� � � � � � S | S t | j � � dk r| S | j rZt | j � � }d}t |� � D ]&\ }}t ||� � ||<