� ��ga ��r�ddlmZddlmZddlmZddlmZddlm Z ddl m Z m Z m Z Gd�d e ��Zd S) �)� _sympifyit)�global_parameters)� fuzzy_bool)�S)�_sympify�)�Set� FiniteSet�SetKindc���eZdZdZd �fd� Zed���Zd�Zede ��d���Z d�Z d �Z d �Z ed ���Z�xZS) �PowerSetaEA symbolic object representing a power set. Parameters ========== arg : Set The set to take power of. evaluate : bool The flag to control evaluation. If the evaluation is disabled for finite sets, it can take advantage of using subset test as a membership test. Notes ===== Power set `\mathcal{P}(S)` is defined as a set containing all the subsets of `S`. If the set `S` is a finite set, its power set would have `2^{\left| S \right|}` elements, where `\left| S \right|` denotes the cardinality of `S`. Examples ======== >>> from sympy import PowerSet, S, FiniteSet A power set of a finite set: >>> PowerSet(FiniteSet(1, 2, 3)) PowerSet({1, 2, 3}) A power set of an empty set: >>> PowerSet(S.EmptySet) PowerSet(EmptySet) >>> PowerSet(PowerSet(S.EmptySet)) PowerSet(PowerSet(EmptySet)) A power set of an infinite set: >>> PowerSet(S.Reals) PowerSet(Reals) Evaluating the power set of a finite set to its explicit form: >>> PowerSet(FiniteSet(1, 2, 3)).rewrite(FiniteSet) FiniteSet(EmptySet, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}) References ========== .. [1] https://en.wikipedia.org/wiki/Power_set .. [2] https://en.wikipedia.org/wiki/Axiom_of_power_set Nc����|� tj}t|��}t|t��s"t d�|�����t���||��S)Nz{} must be a set.) r�evaluater� isinstancer � ValueError�format�super�__new__)�cls�argr� __class__s ��c/home/asafur/pinokio/api/open-webui.git/app/env/lib/python3.11/site-packages/sympy/sets/powerset.pyrzPowerSet.__new__Esc��� � �&�/�H��s�m�m���#�s�#�#� >��0�7�7��<�<�=�=� =��w�w���s�C�(�(�(�c��|jdS)Nr)�args��selfs rrz PowerSet.argPs���y��|�rc�J�|j}|jr|���SdS�N)r� is_FiniteSet�powerset)rr�kwargsrs r�_eval_rewrite_as_FiniteSetz#PowerSet._eval_rewrite_as_FiniteSetTs'���h�� � � "��<�<�>�>� !��tr�otherc�~�t|t��sdSt|j�|����Sr)rr rr� is_superset�rr$s r� _containszPowerSet._containsZs7���%��%�%� ��4��$�(�.�.�u�5�5�6�6�6rc�n�t|t��r|j�|j��SdSr)rr r� is_subsetr's r�_eval_is_subsetzPowerSet._eval_is_subsetas6�� �e�X� &� &� 1��8�%�%�e�i�0�0� 0� 1� 1rc�0�dt|j��zS)N�)�lenrrs r�__len__zPowerSet.__len__es���C���M�M�!�!rc#��K�tjg}tjV�|jD]K}g}t|��}|D] }||z}|V�|�|���!|�|���LdSr)r�EmptySetrr �append�extend)r�found�x�temp�y�news r�__iter__zPowerSet.__iter__hs������� ���j������ � �A��D��!� � �A�� !� !���!�e��� � � �� � �C� � � � � �L�L�� � � � � � rc�4�t|jj��Sr)r r�kindrs rr;z PowerSet.kindus���t�x�}�%�%�%rr)�__name__� __module__� __qualname__�__doc__r�propertyrr#r�NotImplementedr(r+r/r9r;� __classcell__)rs@rr r s��������9�9�t )� )� )� )� )� )�����X����� �Z���(�(�7�7�)�(�7� 1�1�1�"�"�"� � � ��&�&��X�&�&�&�&�&rr N)�sympy.core.decoratorsr�sympy.core.parametersr�sympy.core.logicr�sympy.core.singletonr�sympy.core.sympifyr�setsr r r r �rr�<module>rJs���,�,�,�,�,�,�3�3�3�3�3�3�'�'�'�'�'�'�"�"�"�"�"�"�'�'�'�'�'�'�)�)�)�)�)�)�)�)�)�)�m&�m&�m&�m&�m&�s�m&�m&�m&�m&�m&r
Memory