""" This file contains the templating for model cards prior to the v3.0 release. It still exists to be used alongside SentenceTransformer.old_fit for backwards compatibility, but will be removed in a future release. """ from __future__ import annotations import logging from .util import fullname class ModelCardTemplate: __TAGS__ = ["sentence-transformers", "feature-extraction", "sentence-similarity"] __DEFAULT_VARS__ = { "{PIPELINE_TAG}": "sentence-similarity", "{MODEL_DESCRIPTION}": "<!--- Describe your model here -->", "{TRAINING_SECTION}": "", "{USAGE_TRANSFORMERS_SECTION}": "", "{EVALUATION}": "<!--- Describe how your model was evaluated -->", "{CITING}": "<!--- Describe where people can find more information -->", } __MODEL_CARD__ = """ --- library_name: sentence-transformers pipeline_tag: {PIPELINE_TAG} tags: {TAGS} {DATASETS} --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a {NUM_DIMENSIONS} dimensional dense vector space and can be used for tasks like clustering or semantic search. {MODEL_DESCRIPTION} ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` {USAGE_TRANSFORMERS_SECTION} ## Evaluation Results {EVALUATION} For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) {TRAINING_SECTION} ## Full Model Architecture ``` {FULL_MODEL_STR} ``` ## Citing & Authors {CITING} """ __TRAINING_SECTION__ = """ ## Training The model was trained with the parameters: {LOSS_FUNCTIONS} Parameters of the fit()-Method: ``` {FIT_PARAMETERS} ``` """ __USAGE_TRANSFORMERS__ = """\n ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch {POOLING_FUNCTION} # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, {POOLING_MODE} pooling. sentence_embeddings = {POOLING_FUNCTION_NAME}(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` """ @staticmethod def model_card_get_pooling_function(pooling_mode): if pooling_mode == "max": return ( "max_pooling", """ # Max Pooling - Take the max value over time for every dimension. def max_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() token_embeddings[input_mask_expanded == 0] = -1e9 # Set padding tokens to large negative value return torch.max(token_embeddings, 1)[0] """, ) elif pooling_mode == "mean": return ( "mean_pooling", """ #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) """, ) elif pooling_mode == "cls": return ( "cls_pooling", """ def cls_pooling(model_output, attention_mask): return model_output[0][:,0] """, ) @staticmethod def get_train_objective_info(dataloader, loss): try: if hasattr(dataloader, "get_config_dict"): loader_params = dataloader.get_config_dict() else: loader_params = {} loader_params["batch_size"] = dataloader.batch_size if hasattr(dataloader, "batch_size") else "unknown" if hasattr(dataloader, "sampler"): loader_params["sampler"] = fullname(dataloader.sampler) if hasattr(dataloader, "batch_sampler"): loader_params["batch_sampler"] = fullname(dataloader.batch_sampler) dataloader_str = f"""**DataLoader**:\n\n`{fullname(dataloader)}` of length {len(dataloader)} with parameters: ``` {loader_params} ```""" loss_str = "**Loss**:\n\n`{}` {}".format( fullname(loss), f"""with parameters: ``` {loss.get_config_dict()} ```""" if hasattr(loss, "get_config_dict") else "", ) return [dataloader_str, loss_str] except Exception as e: logging.WARN(f"Exception when creating get_train_objective_info: {str(e)}") return ""
Memory