from __future__ import annotations import csv import logging import os from contextlib import nullcontext from typing import TYPE_CHECKING import numpy as np from sentence_transformers.evaluation.SentenceEvaluator import SentenceEvaluator if TYPE_CHECKING: from sentence_transformers.SentenceTransformer import SentenceTransformer logger = logging.getLogger(__name__) class MSEEvaluatorFromDataFrame(SentenceEvaluator): """ Computes the mean squared error (x100) between the computed sentence embedding and some target sentence embedding. Args: dataframe (List[Dict[str, str]]): It must have the following format. Rows contains different, parallel sentences. Columns are the respective language codes:: [{'en': 'My sentence in English', 'es': 'Oración en español', 'fr': 'Phrase en français'...}, {'en': 'My second sentence', ...}] teacher_model (SentenceTransformer): The teacher model used to compute the sentence embeddings. combinations (List[Tuple[str, str]]): Must be of the format ``[('en', 'es'), ('en', 'fr'), ...]``. First entry in a tuple is the source language. The sentence in the respective language will be fetched from the dataframe and passed to the teacher model. Second entry in a tuple the the target language. Sentence will be fetched from the dataframe and passed to the student model batch_size (int, optional): The batch size to compute sentence embeddings. Defaults to 8. name (str, optional): The name of the evaluator. Defaults to "". write_csv (bool, optional): Whether to write the results to a CSV file. Defaults to True. truncate_dim (Optional[int], optional): The dimension to truncate sentence embeddings to. If None, uses the model's current truncation dimension. Defaults to None. """ def __init__( self, dataframe: list[dict[str, str]], teacher_model: SentenceTransformer, combinations: list[tuple[str, str]], batch_size: int = 8, name: str = "", write_csv: bool = True, truncate_dim: int | None = None, ): super().__init__() self.combinations = combinations self.name = name self.batch_size = batch_size if name: name = "_" + name self.csv_file = "mse_evaluation" + name + "_results.csv" self.csv_headers = ["epoch", "steps"] self.primary_metric = "negative_mse" self.write_csv = write_csv self.truncate_dim = truncate_dim self.data = {} logger.info("Compute teacher embeddings") all_source_sentences = set() for src_lang, trg_lang in self.combinations: src_sentences = [] trg_sentences = [] for row in dataframe: if row[src_lang].strip() != "" and row[trg_lang].strip() != "": all_source_sentences.add(row[src_lang]) src_sentences.append(row[src_lang]) trg_sentences.append(row[trg_lang]) self.data[(src_lang, trg_lang)] = (src_sentences, trg_sentences) self.csv_headers.append(f"{src_lang}-{trg_lang}") all_source_sentences = list(all_source_sentences) with ( nullcontext() if self.truncate_dim is None else teacher_model.truncate_sentence_embeddings(self.truncate_dim) ): all_src_embeddings = teacher_model.encode(all_source_sentences, batch_size=self.batch_size) self.teacher_embeddings = {sent: emb for sent, emb in zip(all_source_sentences, all_src_embeddings)} def __call__( self, model: SentenceTransformer, output_path: str = None, epoch: int = -1, steps: int = -1 ) -> dict[str, float]: model.eval() mse_scores = [] for src_lang, trg_lang in self.combinations: src_sentences, trg_sentences = self.data[(src_lang, trg_lang)] src_embeddings = np.asarray([self.teacher_embeddings[sent] for sent in src_sentences]) with nullcontext() if self.truncate_dim is None else model.truncate_sentence_embeddings(self.truncate_dim): trg_embeddings = np.asarray(model.encode(trg_sentences, batch_size=self.batch_size)) mse = ((src_embeddings - trg_embeddings) ** 2).mean() mse *= 100 mse_scores.append(mse) logger.info(f"MSE evaluation on {self.name} dataset - {src_lang}-{trg_lang}:") logger.info(f"MSE (*100):\t{mse:4f}") if output_path is not None and self.write_csv: csv_path = os.path.join(output_path, self.csv_file) output_file_exists = os.path.isfile(csv_path) with open(csv_path, newline="", mode="a" if output_file_exists else "w", encoding="utf-8") as f: writer = csv.writer(f) if not output_file_exists: writer.writerow(self.csv_headers) writer.writerow([epoch, steps] + mse_scores) # Return negative score as SentenceTransformers maximizes the performance metrics = {"negative_mse": -np.mean(mse_scores).item()} metrics = self.prefix_name_to_metrics(metrics, self.name) self.store_metrics_in_model_card_data(model, metrics) return metrics @property def description(self) -> str: return "Knowledge Distillation"
Memory