import warnings import numpy as np from scipy.sparse.linalg._interface import LinearOperator from .utils import make_system from scipy.linalg import get_lapack_funcs __all__ = ['bicg', 'bicgstab', 'cg', 'cgs', 'gmres', 'qmr'] def _get_atol_rtol(name, b_norm, atol=0., rtol=1e-5): """ A helper function to handle tolerance normalization """ if atol == 'legacy' or atol is None or atol < 0: msg = (f"'scipy.sparse.linalg.{name}' called with invalid `atol`={atol}; " "if set, `atol` must be a real, non-negative number.") raise ValueError(msg) atol = max(float(atol), float(rtol) * float(b_norm)) return atol, rtol def bicg(A, b, x0=None, *, rtol=1e-5, atol=0., maxiter=None, M=None, callback=None): """Use BIConjugate Gradient iteration to solve ``Ax = b``. Parameters ---------- A : {sparse array, ndarray, LinearOperator} The real or complex N-by-N matrix of the linear system. Alternatively, `A` can be a linear operator which can produce ``Ax`` and ``A^T x`` using, e.g., ``scipy.sparse.linalg.LinearOperator``. b : ndarray Right hand side of the linear system. Has shape (N,) or (N,1). x0 : ndarray Starting guess for the solution. rtol, atol : float, optional Parameters for the convergence test. For convergence, ``norm(b - A @ x) <= max(rtol*norm(b), atol)`` should be satisfied. The default is ``atol=0.`` and ``rtol=1e-5``. maxiter : integer Maximum number of iterations. Iteration will stop after maxiter steps even if the specified tolerance has not been achieved. M : {sparse array, ndarray, LinearOperator} Preconditioner for `A`. It should approximate the inverse of `A` (see Notes). Effective preconditioning dramatically improves the rate of convergence, which implies that fewer iterations are needed to reach a given error tolerance. callback : function User-supplied function to call after each iteration. It is called as ``callback(xk)``, where ``xk`` is the current solution vector. Returns ------- x : ndarray The converged solution. info : integer Provides convergence information: 0 : successful exit >0 : convergence to tolerance not achieved, number of iterations <0 : parameter breakdown Notes ----- The preconditioner `M` should be a matrix such that ``M @ A`` has a smaller condition number than `A`, see [1]_ . References ---------- .. [1] "Preconditioner", Wikipedia, https://en.wikipedia.org/wiki/Preconditioner .. [2] "Biconjugate gradient method", Wikipedia, https://en.wikipedia.org/wiki/Biconjugate_gradient_method Examples -------- >>> import numpy as np >>> from scipy.sparse import csc_array >>> from scipy.sparse.linalg import bicg >>> A = csc_array([[3, 2, 0], [1, -1, 0], [0, 5, 1.]]) >>> b = np.array([2., 4., -1.]) >>> x, exitCode = bicg(A, b, atol=1e-5) >>> print(exitCode) # 0 indicates successful convergence 0 >>> np.allclose(A.dot(x), b) True """ A, M, x, b, postprocess = make_system(A, M, x0, b) bnrm2 = np.linalg.norm(b) atol, _ = _get_atol_rtol('bicg', bnrm2, atol, rtol) if bnrm2 == 0: return postprocess(b), 0 n = len(b) dotprod = np.vdot if np.iscomplexobj(x) else np.dot if maxiter is None: maxiter = n*10 matvec, rmatvec = A.matvec, A.rmatvec psolve, rpsolve = M.matvec, M.rmatvec rhotol = np.finfo(x.dtype.char).eps**2 # Dummy values to initialize vars, silence linter warnings rho_prev, p, ptilde = None, None, None r = b - matvec(x) if x.any() else b.copy() rtilde = r.copy() for iteration in range(maxiter): if np.linalg.norm(r) < atol: # Are we done? return postprocess(x), 0 z = psolve(r) ztilde = rpsolve(rtilde) # order matters in this dot product rho_cur = dotprod(rtilde, z) if np.abs(rho_cur) < rhotol: # Breakdown case return postprocess, -10 if iteration > 0: beta = rho_cur / rho_prev p *= beta p += z ptilde *= beta.conj() ptilde += ztilde else: # First spin p = z.copy() ptilde = ztilde.copy() q = matvec(p) qtilde = rmatvec(ptilde) rv = dotprod(ptilde, q) if rv == 0: return postprocess(x), -11 alpha = rho_cur / rv x += alpha*p r -= alpha*q rtilde -= alpha.conj()*qtilde rho_prev = rho_cur if callback: callback(x) else: # for loop exhausted # Return incomplete progress return postprocess(x), maxiter def bicgstab(A, b, x0=None, *, rtol=1e-5, atol=0., maxiter=None, M=None, callback=None): """Use BIConjugate Gradient STABilized iteration to solve ``Ax = b``. Parameters ---------- A : {sparse array, ndarray, LinearOperator} The real or complex N-by-N matrix of the linear system. Alternatively, `A` can be a linear operator which can produce ``Ax`` and ``A^T x`` using, e.g., ``scipy.sparse.linalg.LinearOperator``. b : ndarray Right hand side of the linear system. Has shape (N,) or (N,1). x0 : ndarray Starting guess for the solution. rtol, atol : float, optional Parameters for the convergence test. For convergence, ``norm(b - A @ x) <= max(rtol*norm(b), atol)`` should be satisfied. The default is ``atol=0.`` and ``rtol=1e-5``. maxiter : integer Maximum number of iterations. Iteration will stop after maxiter steps even if the specified tolerance has not been achieved. M : {sparse array, ndarray, LinearOperator} Preconditioner for `A`. It should approximate the inverse of `A` (see Notes). Effective preconditioning dramatically improves the rate of convergence, which implies that fewer iterations are needed to reach a given error tolerance. callback : function User-supplied function to call after each iteration. It is called as ``callback(xk)``, where ``xk`` is the current solution vector. Returns ------- x : ndarray The converged solution. info : integer Provides convergence information: 0 : successful exit >0 : convergence to tolerance not achieved, number of iterations <0 : parameter breakdown Notes ----- The preconditioner `M` should be a matrix such that ``M @ A`` has a smaller condition number than `A`, see [1]_ . References ---------- .. [1] "Preconditioner", Wikipedia, https://en.wikipedia.org/wiki/Preconditioner .. [2] "Biconjugate gradient stabilized method", Wikipedia, https://en.wikipedia.org/wiki/Biconjugate_gradient_stabilized_method Examples -------- >>> import numpy as np >>> from scipy.sparse import csc_array >>> from scipy.sparse.linalg import bicgstab >>> R = np.array([[4, 2, 0, 1], ... [3, 0, 0, 2], ... [0, 1, 1, 1], ... [0, 2, 1, 0]]) >>> A = csc_array(R) >>> b = np.array([-1, -0.5, -1, 2]) >>> x, exit_code = bicgstab(A, b, atol=1e-5) >>> print(exit_code) # 0 indicates successful convergence 0 >>> np.allclose(A.dot(x), b) True """ A, M, x, b, postprocess = make_system(A, M, x0, b) bnrm2 = np.linalg.norm(b) atol, _ = _get_atol_rtol('bicgstab', bnrm2, atol, rtol) if bnrm2 == 0: return postprocess(b), 0 n = len(b) dotprod = np.vdot if np.iscomplexobj(x) else np.dot if maxiter is None: maxiter = n*10 matvec = A.matvec psolve = M.matvec # These values make no sense but coming from original Fortran code # sqrt might have been meant instead. rhotol = np.finfo(x.dtype.char).eps**2 omegatol = rhotol # Dummy values to initialize vars, silence linter warnings rho_prev, omega, alpha, p, v = None, None, None, None, None r = b - matvec(x) if x.any() else b.copy() rtilde = r.copy() for iteration in range(maxiter): if np.linalg.norm(r) < atol: # Are we done? return postprocess(x), 0 rho = dotprod(rtilde, r) if np.abs(rho) < rhotol: # rho breakdown return postprocess(x), -10 if iteration > 0: if np.abs(omega) < omegatol: # omega breakdown return postprocess(x), -11 beta = (rho / rho_prev) * (alpha / omega) p -= omega*v p *= beta p += r else: # First spin s = np.empty_like(r) p = r.copy() phat = psolve(p) v = matvec(phat) rv = dotprod(rtilde, v) if rv == 0: return postprocess(x), -11 alpha = rho / rv r -= alpha*v s[:] = r[:] if np.linalg.norm(s) < atol: x += alpha*phat return postprocess(x), 0 shat = psolve(s) t = matvec(shat) omega = dotprod(t, s) / dotprod(t, t) x += alpha*phat x += omega*shat r -= omega*t rho_prev = rho if callback: callback(x) else: # for loop exhausted # Return incomplete progress return postprocess(x), maxiter def cg(A, b, x0=None, *, rtol=1e-5, atol=0., maxiter=None, M=None, callback=None): """Use Conjugate Gradient iteration to solve ``Ax = b``. Parameters ---------- A : {sparse array, ndarray, LinearOperator} The real or complex N-by-N matrix of the linear system. `A` must represent a hermitian, positive definite matrix. Alternatively, `A` can be a linear operator which can produce ``Ax`` using, e.g., ``scipy.sparse.linalg.LinearOperator``. b : ndarray Right hand side of the linear system. Has shape (N,) or (N,1). x0 : ndarray Starting guess for the solution. rtol, atol : float, optional Parameters for the convergence test. For convergence, ``norm(b - A @ x) <= max(rtol*norm(b), atol)`` should be satisfied. The default is ``atol=0.`` and ``rtol=1e-5``. maxiter : integer Maximum number of iterations. Iteration will stop after maxiter steps even if the specified tolerance has not been achieved. M : {sparse array, ndarray, LinearOperator} Preconditioner for `A`. `M` must represent a hermitian, positive definite matrix. It should approximate the inverse of `A` (see Notes). Effective preconditioning dramatically improves the rate of convergence, which implies that fewer iterations are needed to reach a given error tolerance. callback : function User-supplied function to call after each iteration. It is called as ``callback(xk)``, where ``xk`` is the current solution vector. Returns ------- x : ndarray The converged solution. info : integer Provides convergence information: 0 : successful exit >0 : convergence to tolerance not achieved, number of iterations Notes ----- The preconditioner `M` should be a matrix such that ``M @ A`` has a smaller condition number than `A`, see [2]_. References ---------- .. [1] "Conjugate Gradient Method, Wikipedia, https://en.wikipedia.org/wiki/Conjugate_gradient_method .. [2] "Preconditioner", Wikipedia, https://en.wikipedia.org/wiki/Preconditioner Examples -------- >>> import numpy as np >>> from scipy.sparse import csc_array >>> from scipy.sparse.linalg import cg >>> P = np.array([[4, 0, 1, 0], ... [0, 5, 0, 0], ... [1, 0, 3, 2], ... [0, 0, 2, 4]]) >>> A = csc_array(P) >>> b = np.array([-1, -0.5, -1, 2]) >>> x, exit_code = cg(A, b, atol=1e-5) >>> print(exit_code) # 0 indicates successful convergence 0 >>> np.allclose(A.dot(x), b) True """ A, M, x, b, postprocess = make_system(A, M, x0, b) bnrm2 = np.linalg.norm(b) atol, _ = _get_atol_rtol('cg', bnrm2, atol, rtol) if bnrm2 == 0: return postprocess(b), 0 n = len(b) if maxiter is None: maxiter = n*10 dotprod = np.vdot if np.iscomplexobj(x) else np.dot matvec = A.matvec psolve = M.matvec r = b - matvec(x) if x.any() else b.copy() # Dummy value to initialize var, silences warnings rho_prev, p = None, None for iteration in range(maxiter): if np.linalg.norm(r) < atol: # Are we done? return postprocess(x), 0 z = psolve(r) rho_cur = dotprod(r, z) if iteration > 0: beta = rho_cur / rho_prev p *= beta p += z else: # First spin p = np.empty_like(r) p[:] = z[:] q = matvec(p) alpha = rho_cur / dotprod(p, q) x += alpha*p r -= alpha*q rho_prev = rho_cur if callback: callback(x) else: # for loop exhausted # Return incomplete progress return postprocess(x), maxiter def cgs(A, b, x0=None, *, rtol=1e-5, atol=0., maxiter=None, M=None, callback=None): """Use Conjugate Gradient Squared iteration to solve ``Ax = b``. Parameters ---------- A : {sparse array, ndarray, LinearOperator} The real-valued N-by-N matrix of the linear system. Alternatively, `A` can be a linear operator which can produce ``Ax`` using, e.g., ``scipy.sparse.linalg.LinearOperator``. b : ndarray Right hand side of the linear system. Has shape (N,) or (N,1). x0 : ndarray Starting guess for the solution. rtol, atol : float, optional Parameters for the convergence test. For convergence, ``norm(b - A @ x) <= max(rtol*norm(b), atol)`` should be satisfied. The default is ``atol=0.`` and ``rtol=1e-5``. maxiter : integer Maximum number of iterations. Iteration will stop after maxiter steps even if the specified tolerance has not been achieved. M : {sparse array, ndarray, LinearOperator} Preconditioner for ``A``. It should approximate the inverse of `A` (see Notes). Effective preconditioning dramatically improves the rate of convergence, which implies that fewer iterations are needed to reach a given error tolerance. callback : function User-supplied function to call after each iteration. It is called as ``callback(xk)``, where ``xk`` is the current solution vector. Returns ------- x : ndarray The converged solution. info : integer Provides convergence information: 0 : successful exit >0 : convergence to tolerance not achieved, number of iterations <0 : parameter breakdown Notes ----- The preconditioner `M` should be a matrix such that ``M @ A`` has a smaller condition number than `A`, see [1]_. References ---------- .. [1] "Preconditioner", Wikipedia, https://en.wikipedia.org/wiki/Preconditioner .. [2] "Conjugate gradient squared", Wikipedia, https://en.wikipedia.org/wiki/Conjugate_gradient_squared_method Examples -------- >>> import numpy as np >>> from scipy.sparse import csc_array >>> from scipy.sparse.linalg import cgs >>> R = np.array([[4, 2, 0, 1], ... [3, 0, 0, 2], ... [0, 1, 1, 1], ... [0, 2, 1, 0]]) >>> A = csc_array(R) >>> b = np.array([-1, -0.5, -1, 2]) >>> x, exit_code = cgs(A, b) >>> print(exit_code) # 0 indicates successful convergence 0 >>> np.allclose(A.dot(x), b) True """ A, M, x, b, postprocess = make_system(A, M, x0, b) bnrm2 = np.linalg.norm(b) atol, _ = _get_atol_rtol('cgs', bnrm2, atol, rtol) if bnrm2 == 0: return postprocess(b), 0 n = len(b) dotprod = np.vdot if np.iscomplexobj(x) else np.dot if maxiter is None: maxiter = n*10 matvec = A.matvec psolve = M.matvec rhotol = np.finfo(x.dtype.char).eps**2 r = b - matvec(x) if x.any() else b.copy() rtilde = r.copy() bnorm = np.linalg.norm(b) if bnorm == 0: bnorm = 1 # Dummy values to initialize vars, silence linter warnings rho_prev, p, u, q = None, None, None, None for iteration in range(maxiter): rnorm = np.linalg.norm(r) if rnorm < atol: # Are we done? return postprocess(x), 0 rho_cur = dotprod(rtilde, r) if np.abs(rho_cur) < rhotol: # Breakdown case return postprocess, -10 if iteration > 0: beta = rho_cur / rho_prev # u = r + beta * q # p = u + beta * (q + beta * p); u[:] = r[:] u += beta*q p *= beta p += q p *= beta p += u else: # First spin p = r.copy() u = r.copy() q = np.empty_like(r) phat = psolve(p) vhat = matvec(phat) rv = dotprod(rtilde, vhat) if rv == 0: # Dot product breakdown return postprocess(x), -11 alpha = rho_cur / rv q[:] = u[:] q -= alpha*vhat uhat = psolve(u + q) x += alpha*uhat # Due to numerical error build-up the actual residual is computed # instead of the following two lines that were in the original # FORTRAN templates, still using a single matvec. # qhat = matvec(uhat) # r -= alpha*qhat r = b - matvec(x) rho_prev = rho_cur if callback: callback(x) else: # for loop exhausted # Return incomplete progress return postprocess(x), maxiter def gmres(A, b, x0=None, *, rtol=1e-5, atol=0., restart=None, maxiter=None, M=None, callback=None, callback_type=None): """ Use Generalized Minimal RESidual iteration to solve ``Ax = b``. Parameters ---------- A : {sparse array, ndarray, LinearOperator} The real or complex N-by-N matrix of the linear system. Alternatively, `A` can be a linear operator which can produce ``Ax`` using, e.g., ``scipy.sparse.linalg.LinearOperator``. b : ndarray Right hand side of the linear system. Has shape (N,) or (N,1). x0 : ndarray Starting guess for the solution (a vector of zeros by default). atol, rtol : float Parameters for the convergence test. For convergence, ``norm(b - A @ x) <= max(rtol*norm(b), atol)`` should be satisfied. The default is ``atol=0.`` and ``rtol=1e-5``. restart : int, optional Number of iterations between restarts. Larger values increase iteration cost, but may be necessary for convergence. If omitted, ``min(20, n)`` is used. maxiter : int, optional Maximum number of iterations (restart cycles). Iteration will stop after maxiter steps even if the specified tolerance has not been achieved. See `callback_type`. M : {sparse array, ndarray, LinearOperator} Inverse of the preconditioner of `A`. `M` should approximate the inverse of `A` and be easy to solve for (see Notes). Effective preconditioning dramatically improves the rate of convergence, which implies that fewer iterations are needed to reach a given error tolerance. By default, no preconditioner is used. In this implementation, left preconditioning is used, and the preconditioned residual is minimized. However, the final convergence is tested with respect to the ``b - A @ x`` residual. callback : function User-supplied function to call after each iteration. It is called as ``callback(args)``, where ``args`` are selected by `callback_type`. callback_type : {'x', 'pr_norm', 'legacy'}, optional Callback function argument requested: - ``x``: current iterate (ndarray), called on every restart - ``pr_norm``: relative (preconditioned) residual norm (float), called on every inner iteration - ``legacy`` (default): same as ``pr_norm``, but also changes the meaning of `maxiter` to count inner iterations instead of restart cycles. This keyword has no effect if `callback` is not set. Returns ------- x : ndarray The converged solution. info : int Provides convergence information: 0 : successful exit >0 : convergence to tolerance not achieved, number of iterations See Also -------- LinearOperator Notes ----- A preconditioner, P, is chosen such that P is close to A but easy to solve for. The preconditioner parameter required by this routine is ``M = P^-1``. The inverse should preferably not be calculated explicitly. Rather, use the following template to produce M:: # Construct a linear operator that computes P^-1 @ x. import scipy.sparse.linalg as spla M_x = lambda x: spla.spsolve(P, x) M = spla.LinearOperator((n, n), M_x) Examples -------- >>> import numpy as np >>> from scipy.sparse import csc_array >>> from scipy.sparse.linalg import gmres >>> A = csc_array([[3, 2, 0], [1, -1, 0], [0, 5, 1]], dtype=float) >>> b = np.array([2, 4, -1], dtype=float) >>> x, exitCode = gmres(A, b, atol=1e-5) >>> print(exitCode) # 0 indicates successful convergence 0 >>> np.allclose(A.dot(x), b) True """ if callback is not None and callback_type is None: # Warn about 'callback_type' semantic changes. # Probably should be removed only in far future, Scipy 2.0 or so. msg = ("scipy.sparse.linalg.gmres called without specifying " "`callback_type`. The default value will be changed in" " a future release. For compatibility, specify a value " "for `callback_type` explicitly, e.g., " "``gmres(..., callback_type='pr_norm')``, or to retain the " "old behavior ``gmres(..., callback_type='legacy')``" ) warnings.warn(msg, category=DeprecationWarning, stacklevel=3) if callback_type is None: callback_type = 'legacy' if callback_type not in ('x', 'pr_norm', 'legacy'): raise ValueError(f"Unknown callback_type: {callback_type!r}") if callback is None: callback_type = None A, M, x, b, postprocess = make_system(A, M, x0, b) matvec = A.matvec psolve = M.matvec n = len(b) bnrm2 = np.linalg.norm(b) atol, _ = _get_atol_rtol('gmres', bnrm2, atol, rtol) if bnrm2 == 0: return postprocess(b), 0 eps = np.finfo(x.dtype.char).eps dotprod = np.vdot if np.iscomplexobj(x) else np.dot if maxiter is None: maxiter = n*10 if restart is None: restart = 20 restart = min(restart, n) Mb_nrm2 = np.linalg.norm(psolve(b)) # ==================================================== # =========== Tolerance control from gh-8400 ========= # ==================================================== # Tolerance passed to GMRESREVCOM applies to the inner # iteration and deals with the left-preconditioned # residual. ptol_max_factor = 1. ptol = Mb_nrm2 * min(ptol_max_factor, atol / bnrm2) presid = 0. # ==================================================== lartg = get_lapack_funcs('lartg', dtype=x.dtype) # allocate internal variables v = np.empty([restart+1, n], dtype=x.dtype) h = np.zeros([restart, restart+1], dtype=x.dtype) givens = np.zeros([restart, 2], dtype=x.dtype) # legacy iteration count inner_iter = 0 for iteration in range(maxiter): if iteration == 0: r = b - matvec(x) if x.any() else b.copy() if np.linalg.norm(r) < atol: # Are we done? return postprocess(x), 0 v[0, :] = psolve(r) tmp = np.linalg.norm(v[0, :]) v[0, :] *= (1 / tmp) # RHS of the Hessenberg problem S = np.zeros(restart+1, dtype=x.dtype) S[0] = tmp breakdown = False for col in range(restart): av = matvec(v[col, :]) w = psolve(av) # Modified Gram-Schmidt h0 = np.linalg.norm(w) for k in range(col+1): tmp = dotprod(v[k, :], w) h[col, k] = tmp w -= tmp*v[k, :] h1 = np.linalg.norm(w) h[col, col + 1] = h1 v[col + 1, :] = w[:] # Exact solution indicator if h1 <= eps*h0: h[col, col + 1] = 0 breakdown = True else: v[col + 1, :] *= (1 / h1) # apply past Givens rotations to current h column for k in range(col): c, s = givens[k, 0], givens[k, 1] n0, n1 = h[col, [k, k+1]] h[col, [k, k + 1]] = [c*n0 + s*n1, -s.conj()*n0 + c*n1] # get and apply current rotation to h and S c, s, mag = lartg(h[col, col], h[col, col+1]) givens[col, :] = [c, s] h[col, [col, col+1]] = mag, 0 # S[col+1] component is always 0 tmp = -np.conjugate(s)*S[col] S[[col, col + 1]] = [c*S[col], tmp] presid = np.abs(tmp) inner_iter += 1 if callback_type in ('legacy', 'pr_norm'): callback(presid / bnrm2) # Legacy behavior if callback_type == 'legacy' and inner_iter == maxiter: break if presid <= ptol or breakdown: break # Solve h(col, col) upper triangular system and allow pseudo-solve # singular cases as in (but without the f2py copies): # y = trsv(h[:col+1, :col+1].T, S[:col+1]) if h[col, col] == 0: S[col] = 0 y = np.zeros([col+1], dtype=x.dtype) y[:] = S[:col+1] for k in range(col, 0, -1): if y[k] != 0: y[k] /= h[k, k] tmp = y[k] y[:k] -= tmp*h[k, :k] if y[0] != 0: y[0] /= h[0, 0] x += y @ v[:col+1, :] r = b - matvec(x) rnorm = np.linalg.norm(r) # Legacy exit if callback_type == 'legacy' and inner_iter == maxiter: return postprocess(x), 0 if rnorm <= atol else maxiter if callback_type == 'x': callback(x) if rnorm <= atol: break elif breakdown: # Reached breakdown (= exact solution), but the external # tolerance check failed. Bail out with failure. break elif presid <= ptol: # Inner loop passed but outer didn't ptol_max_factor = max(eps, 0.25 * ptol_max_factor) else: ptol_max_factor = min(1.0, 1.5 * ptol_max_factor) ptol = presid * min(ptol_max_factor, atol / rnorm) info = 0 if (rnorm <= atol) else maxiter return postprocess(x), info def qmr(A, b, x0=None, *, rtol=1e-5, atol=0., maxiter=None, M1=None, M2=None, callback=None): """Use Quasi-Minimal Residual iteration to solve ``Ax = b``. Parameters ---------- A : {sparse array, ndarray, LinearOperator} The real-valued N-by-N matrix of the linear system. Alternatively, ``A`` can be a linear operator which can produce ``Ax`` and ``A^T x`` using, e.g., ``scipy.sparse.linalg.LinearOperator``. b : ndarray Right hand side of the linear system. Has shape (N,) or (N,1). x0 : ndarray Starting guess for the solution. atol, rtol : float, optional Parameters for the convergence test. For convergence, ``norm(b - A @ x) <= max(rtol*norm(b), atol)`` should be satisfied. The default is ``atol=0.`` and ``rtol=1e-5``. maxiter : integer Maximum number of iterations. Iteration will stop after maxiter steps even if the specified tolerance has not been achieved. M1 : {sparse array, ndarray, LinearOperator} Left preconditioner for A. M2 : {sparse array, ndarray, LinearOperator} Right preconditioner for A. Used together with the left preconditioner M1. The matrix M1@A@M2 should have better conditioned than A alone. callback : function User-supplied function to call after each iteration. It is called as callback(xk), where xk is the current solution vector. Returns ------- x : ndarray The converged solution. info : integer Provides convergence information: 0 : successful exit >0 : convergence to tolerance not achieved, number of iterations <0 : parameter breakdown See Also -------- LinearOperator Examples -------- >>> import numpy as np >>> from scipy.sparse import csc_array >>> from scipy.sparse.linalg import qmr >>> A = csc_array([[3., 2., 0.], [1., -1., 0.], [0., 5., 1.]]) >>> b = np.array([2., 4., -1.]) >>> x, exitCode = qmr(A, b, atol=1e-5) >>> print(exitCode) # 0 indicates successful convergence 0 >>> np.allclose(A.dot(x), b) True """ A_ = A A, M, x, b, postprocess = make_system(A, None, x0, b) bnrm2 = np.linalg.norm(b) atol, _ = _get_atol_rtol('qmr', bnrm2, atol, rtol) if bnrm2 == 0: return postprocess(b), 0 if M1 is None and M2 is None: if hasattr(A_, 'psolve'): def left_psolve(b): return A_.psolve(b, 'left') def right_psolve(b): return A_.psolve(b, 'right') def left_rpsolve(b): return A_.rpsolve(b, 'left') def right_rpsolve(b): return A_.rpsolve(b, 'right') M1 = LinearOperator(A.shape, matvec=left_psolve, rmatvec=left_rpsolve) M2 = LinearOperator(A.shape, matvec=right_psolve, rmatvec=right_rpsolve) else: def id(b): return b M1 = LinearOperator(A.shape, matvec=id, rmatvec=id) M2 = LinearOperator(A.shape, matvec=id, rmatvec=id) n = len(b) if maxiter is None: maxiter = n*10 dotprod = np.vdot if np.iscomplexobj(x) else np.dot rhotol = np.finfo(x.dtype.char).eps betatol = rhotol gammatol = rhotol deltatol = rhotol epsilontol = rhotol xitol = rhotol r = b - A.matvec(x) if x.any() else b.copy() vtilde = r.copy() y = M1.matvec(vtilde) rho = np.linalg.norm(y) wtilde = r.copy() z = M2.rmatvec(wtilde) xi = np.linalg.norm(z) gamma, eta, theta = 1, -1, 0 v = np.empty_like(vtilde) w = np.empty_like(wtilde) # Dummy values to initialize vars, silence linter warnings epsilon, q, d, p, s = None, None, None, None, None for iteration in range(maxiter): if np.linalg.norm(r) < atol: # Are we done? return postprocess(x), 0 if np.abs(rho) < rhotol: # rho breakdown return postprocess(x), -10 if np.abs(xi) < xitol: # xi breakdown return postprocess(x), -15 v[:] = vtilde[:] v *= (1 / rho) y *= (1 / rho) w[:] = wtilde[:] w *= (1 / xi) z *= (1 / xi) delta = dotprod(z, y) if np.abs(delta) < deltatol: # delta breakdown return postprocess(x), -13 ytilde = M2.matvec(y) ztilde = M1.rmatvec(z) if iteration > 0: ytilde -= (xi * delta / epsilon) * p p[:] = ytilde[:] ztilde -= (rho * (delta / epsilon).conj()) * q q[:] = ztilde[:] else: # First spin p = ytilde.copy() q = ztilde.copy() ptilde = A.matvec(p) epsilon = dotprod(q, ptilde) if np.abs(epsilon) < epsilontol: # epsilon breakdown return postprocess(x), -14 beta = epsilon / delta if np.abs(beta) < betatol: # beta breakdown return postprocess(x), -11 vtilde[:] = ptilde[:] vtilde -= beta*v y = M1.matvec(vtilde) rho_prev = rho rho = np.linalg.norm(y) wtilde[:] = w[:] wtilde *= - beta.conj() wtilde += A.rmatvec(q) z = M2.rmatvec(wtilde) xi = np.linalg.norm(z) gamma_prev = gamma theta_prev = theta theta = rho / (gamma_prev * np.abs(beta)) gamma = 1 / np.sqrt(1 + theta**2) if np.abs(gamma) < gammatol: # gamma breakdown return postprocess(x), -12 eta *= -(rho_prev / beta) * (gamma / gamma_prev)**2 if iteration > 0: d *= (theta_prev * gamma) ** 2 d += eta*p s *= (theta_prev * gamma) ** 2 s += eta*ptilde else: d = p.copy() d *= eta s = ptilde.copy() s *= eta x += d r -= s if callback: callback(x) else: # for loop exhausted # Return incomplete progress return postprocess(x), maxiter
Memory