"""LangSmith evaluation utilities. This module provides utilities for evaluating Chains and other language model applications using LangChain evaluators and LangSmith. For more information on the LangSmith API, see the `LangSmith API documentation <https://docs.smith.langchain.com/docs/>`_. **Example** .. code-block:: python from langsmith import Client from langchain_community.chat_models import ChatOpenAI from langchain.chains import LLMChain from langchain.smith import EvaluatorType, RunEvalConfig, run_on_dataset def construct_chain(): llm = ChatOpenAI(temperature=0) chain = LLMChain.from_string( llm, "What's the answer to {your_input_key}" ) return chain evaluation_config = RunEvalConfig( evaluators=[ EvaluatorType.QA, # "Correctness" against a reference answer EvaluatorType.EMBEDDING_DISTANCE, RunEvalConfig.Criteria("helpfulness"), RunEvalConfig.Criteria({ "fifth-grader-score": "Do you have to be smarter than a fifth grader to answer this question?" }), ] ) client = Client() run_on_dataset( client, "<my_dataset_name>", construct_chain, evaluation=evaluation_config ) **Attributes** - ``arun_on_dataset``: Asynchronous function to evaluate a chain or other LangChain component over a dataset. - ``run_on_dataset``: Function to evaluate a chain or other LangChain component over a dataset. - ``RunEvalConfig``: Class representing the configuration for running evaluation. - ``StringRunEvaluatorChain``: Class representing a string run evaluator chain. - ``InputFormatError``: Exception raised when the input format is incorrect. """ # noqa: E501 from langchain.smith.evaluation.config import RunEvalConfig from langchain.smith.evaluation.runner_utils import ( InputFormatError, arun_on_dataset, run_on_dataset, ) from langchain.smith.evaluation.string_run_evaluator import StringRunEvaluatorChain __all__ = [ "InputFormatError", "arun_on_dataset", "run_on_dataset", "StringRunEvaluatorChain", "RunEvalConfig", ]
Memory