import bisect import functools import os from dataclasses import dataclass from typing import Dict, List, Optional, Tuple import numpy as np from faster_whisper.utils import get_assets_path # The code below is adapted from https://github.com/snakers4/silero-vad. @dataclass class VadOptions: """VAD options. Attributes: threshold: Speech threshold. Silero VAD outputs speech probabilities for each audio chunk, probabilities ABOVE this value are considered as SPEECH. It is better to tune this parameter for each dataset separately, but "lazy" 0.5 is pretty good for most datasets. neg_threshold: Silence threshold for determining the end of speech. If a probability is lower than neg_threshold, it is always considered silence. Values higher than neg_threshold are only considered speech if the previous sample was classified as speech; otherwise, they are treated as silence. This parameter helps refine the detection of speech transitions, ensuring smoother segment boundaries. min_speech_duration_ms: Final speech chunks shorter min_speech_duration_ms are thrown out. max_speech_duration_s: Maximum duration of speech chunks in seconds. Chunks longer than max_speech_duration_s will be split at the timestamp of the last silence that lasts more than 100ms (if any), to prevent aggressive cutting. Otherwise, they will be split aggressively just before max_speech_duration_s. min_silence_duration_ms: In the end of each speech chunk wait for min_silence_duration_ms before separating it speech_pad_ms: Final speech chunks are padded by speech_pad_ms each side """ threshold: float = 0.5 neg_threshold: float = None min_speech_duration_ms: int = 0 max_speech_duration_s: float = float("inf") min_silence_duration_ms: int = 2000 speech_pad_ms: int = 400 def get_speech_timestamps( audio: np.ndarray, vad_options: Optional[VadOptions] = None, sampling_rate: int = 16000, **kwargs, ) -> List[dict]: """This method is used for splitting long audios into speech chunks using silero VAD. Args: audio: One dimensional float array. vad_options: Options for VAD processing. sampling rate: Sampling rate of the audio. kwargs: VAD options passed as keyword arguments for backward compatibility. Returns: List of dicts containing begin and end samples of each speech chunk. """ if vad_options is None: vad_options = VadOptions(**kwargs) threshold = vad_options.threshold neg_threshold = vad_options.neg_threshold min_speech_duration_ms = vad_options.min_speech_duration_ms max_speech_duration_s = vad_options.max_speech_duration_s min_silence_duration_ms = vad_options.min_silence_duration_ms window_size_samples = 512 speech_pad_ms = vad_options.speech_pad_ms min_speech_samples = sampling_rate * min_speech_duration_ms / 1000 speech_pad_samples = sampling_rate * speech_pad_ms / 1000 max_speech_samples = ( sampling_rate * max_speech_duration_s - window_size_samples - 2 * speech_pad_samples ) min_silence_samples = sampling_rate * min_silence_duration_ms / 1000 min_silence_samples_at_max_speech = sampling_rate * 98 / 1000 audio_length_samples = len(audio) model = get_vad_model() padded_audio = np.pad( audio, (0, window_size_samples - audio.shape[0] % window_size_samples) ) speech_probs = model(padded_audio.reshape(1, -1)).squeeze(0) triggered = False speeches = [] current_speech = {} if neg_threshold is None: neg_threshold = max(threshold - 0.15, 0.01) # to save potential segment end (and tolerate some silence) temp_end = 0 # to save potential segment limits in case of maximum segment size reached prev_end = next_start = 0 for i, speech_prob in enumerate(speech_probs): if (speech_prob >= threshold) and temp_end: temp_end = 0 if next_start < prev_end: next_start = window_size_samples * i if (speech_prob >= threshold) and not triggered: triggered = True current_speech["start"] = window_size_samples * i continue if ( triggered and (window_size_samples * i) - current_speech["start"] > max_speech_samples ): if prev_end: current_speech["end"] = prev_end speeches.append(current_speech) current_speech = {} # previously reached silence (< neg_thres) and is still not speech (< thres) if next_start < prev_end: triggered = False else: current_speech["start"] = next_start prev_end = next_start = temp_end = 0 else: current_speech["end"] = window_size_samples * i speeches.append(current_speech) current_speech = {} prev_end = next_start = temp_end = 0 triggered = False continue if (speech_prob < neg_threshold) and triggered: if not temp_end: temp_end = window_size_samples * i # condition to avoid cutting in very short silence if (window_size_samples * i) - temp_end > min_silence_samples_at_max_speech: prev_end = temp_end if (window_size_samples * i) - temp_end < min_silence_samples: continue else: current_speech["end"] = temp_end if ( current_speech["end"] - current_speech["start"] ) > min_speech_samples: speeches.append(current_speech) current_speech = {} prev_end = next_start = temp_end = 0 triggered = False continue if ( current_speech and (audio_length_samples - current_speech["start"]) > min_speech_samples ): current_speech["end"] = audio_length_samples speeches.append(current_speech) for i, speech in enumerate(speeches): if i == 0: speech["start"] = int(max(0, speech["start"] - speech_pad_samples)) if i != len(speeches) - 1: silence_duration = speeches[i + 1]["start"] - speech["end"] if silence_duration < 2 * speech_pad_samples: speech["end"] += int(silence_duration // 2) speeches[i + 1]["start"] = int( max(0, speeches[i + 1]["start"] - silence_duration // 2) ) else: speech["end"] = int( min(audio_length_samples, speech["end"] + speech_pad_samples) ) speeches[i + 1]["start"] = int( max(0, speeches[i + 1]["start"] - speech_pad_samples) ) else: speech["end"] = int( min(audio_length_samples, speech["end"] + speech_pad_samples) ) return speeches def collect_chunks( audio: np.ndarray, chunks: List[dict], sampling_rate: int = 16000 ) -> Tuple[List[np.ndarray], List[Dict[str, int]]]: """Collects audio chunks.""" if not chunks: chunk_metadata = { "start_time": 0, "end_time": 0, } return [np.array([], dtype=np.float32)], [chunk_metadata] audio_chunks = [] chunks_metadata = [] for chunk in chunks: chunk_metadata = { "start_time": chunk["start"] / sampling_rate, "end_time": chunk["end"] / sampling_rate, } audio_chunks.append(audio[chunk["start"] : chunk["end"]]) chunks_metadata.append(chunk_metadata) return audio_chunks, chunks_metadata class SpeechTimestampsMap: """Helper class to restore original speech timestamps.""" def __init__(self, chunks: List[dict], sampling_rate: int, time_precision: int = 2): self.sampling_rate = sampling_rate self.time_precision = time_precision self.chunk_end_sample = [] self.total_silence_before = [] previous_end = 0 silent_samples = 0 for chunk in chunks: silent_samples += chunk["start"] - previous_end previous_end = chunk["end"] self.chunk_end_sample.append(chunk["end"] - silent_samples) self.total_silence_before.append(silent_samples / sampling_rate) def get_original_time( self, time: float, chunk_index: Optional[int] = None, ) -> float: if chunk_index is None: chunk_index = self.get_chunk_index(time) total_silence_before = self.total_silence_before[chunk_index] return round(total_silence_before + time, self.time_precision) def get_chunk_index(self, time: float) -> int: sample = int(time * self.sampling_rate) return min( bisect.bisect(self.chunk_end_sample, sample), len(self.chunk_end_sample) - 1, ) @functools.lru_cache def get_vad_model(): """Returns the VAD model instance.""" encoder_path = os.path.join(get_assets_path(), "silero_encoder_v5.onnx") decoder_path = os.path.join(get_assets_path(), "silero_decoder_v5.onnx") return SileroVADModel(encoder_path, decoder_path) class SileroVADModel: def __init__(self, encoder_path, decoder_path): try: import onnxruntime except ImportError as e: raise RuntimeError( "Applying the VAD filter requires the onnxruntime package" ) from e opts = onnxruntime.SessionOptions() opts.inter_op_num_threads = 1 opts.intra_op_num_threads = 1 opts.enable_cpu_mem_arena = False opts.log_severity_level = 4 self.encoder_session = onnxruntime.InferenceSession( encoder_path, providers=["CPUExecutionProvider"], sess_options=opts, ) self.decoder_session = onnxruntime.InferenceSession( decoder_path, providers=["CPUExecutionProvider"], sess_options=opts, ) def __call__( self, audio: np.ndarray, num_samples: int = 512, context_size_samples: int = 64 ): assert ( audio.ndim == 2 ), "Input should be a 2D array with size (batch_size, num_samples)" assert ( audio.shape[1] % num_samples == 0 ), "Input size should be a multiple of num_samples" batch_size = audio.shape[0] state = np.zeros((2, batch_size, 128), dtype="float32") context = np.zeros( (batch_size, context_size_samples), dtype="float32", ) batched_audio = audio.reshape(batch_size, -1, num_samples) context = batched_audio[..., -context_size_samples:] context[:, -1] = 0 context = np.roll(context, 1, 1) batched_audio = np.concatenate([context, batched_audio], 2) batched_audio = batched_audio.reshape(-1, num_samples + context_size_samples) encoder_batch_size = 10000 num_segments = batched_audio.shape[0] encoder_outputs = [] for i in range(0, num_segments, encoder_batch_size): encoder_output = self.encoder_session.run( None, {"input": batched_audio[i : i + encoder_batch_size]} )[0] encoder_outputs.append(encoder_output) encoder_output = np.concatenate(encoder_outputs, axis=0) encoder_output = encoder_output.reshape(batch_size, -1, 128) decoder_outputs = [] for window in np.split(encoder_output, encoder_output.shape[1], axis=1): out, state = self.decoder_session.run( None, {"input": window.squeeze(1), "state": state} ) decoder_outputs.append(out) out = np.stack(decoder_outputs, axis=1).squeeze(-1) return out def merge_segments(segments_list, vad_options: VadOptions, sampling_rate: int = 16000): if not segments_list: return [] curr_end = 0 seg_idxs = [] merged_segments = [] edge_padding = vad_options.speech_pad_ms * sampling_rate // 1000 chunk_length = vad_options.max_speech_duration_s * sampling_rate curr_start = segments_list[0]["start"] for idx, seg in enumerate(segments_list): # if any segment start timing is less than previous segment end timing, # reset the edge padding. Similarly for end timing. if idx > 0: if seg["start"] < segments_list[idx - 1]["end"]: seg["start"] += edge_padding if idx < len(segments_list) - 1: if seg["end"] > segments_list[idx + 1]["start"]: seg["end"] -= edge_padding if seg["end"] - curr_start > chunk_length and curr_end - curr_start > 0: merged_segments.append( { "start": curr_start, "end": curr_end, "segments": seg_idxs, } ) curr_start = seg["start"] seg_idxs = [] curr_end = seg["end"] seg_idxs.append((seg["start"], seg["end"])) # add final merged_segments.append( { "start": curr_start, "end": curr_end, "segments": seg_idxs, } ) return merged_segments
Memory