# Copyright 2020 The HuggingFace Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import tensorflow as tf class TFFormatter(TensorFormatter[Mapping, "tf.Tensor", Mapping]): def __init__(self, features=None, token_per_repo_id=None, **tf_tensor_kwargs): super().__init__(features=features, token_per_repo_id=token_per_repo_id) self.tf_tensor_kwargs = tf_tensor_kwargs import tensorflow as tf # noqa: F401 - import tf at initialization def _consolidate(self, column): import tensorflow as tf if isinstance(column, list) and column: if all( isinstance(x, tf.Tensor) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return tf.stack(column) elif all( isinstance(x, (tf.Tensor, tf.RaggedTensor)) and x.ndim == 1 and x.dtype == column[0].dtype for x in column ): # only rag 1-D tensors, otherwise some dimensions become ragged even though they were consolidated return tf.ragged.stack(column) return column def _tensorize(self, value): import tensorflow as tf if value is None: return value default_dtype = {} if isinstance(value, (np.number, np.ndarray)) and np.issubdtype(value.dtype, np.integer): default_dtype = {"dtype": tf.int64} elif isinstance(value, (np.number, np.ndarray)) and np.issubdtype(value.dtype, np.floating): default_dtype = {"dtype": tf.float32} if config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(value, PIL.Image.Image): value = np.asarray(value) if config.TORCHVISION_AVAILABLE and "torchvision" in sys.modules: from torchvision.io import VideoReader if isinstance(value, VideoReader): return value # TODO(QL): set output to tf tensors ? return tf.convert_to_tensor(value, **{**default_dtype, **self.tf_tensor_kwargs}) def _recursive_tensorize(self, data_struct): import tensorflow as tf # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(data_struct, torch.Tensor): return self._tensorize(data_struct.detach().cpu().numpy()[()]) if hasattr(data_struct, "__array__") and not isinstance(data_struct, tf.Tensor): data_struct = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(data_struct, np.ndarray): if data_struct.dtype == object: # tf tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(substruct) for substruct in data_struct]) elif isinstance(data_struct, (list, tuple)): return self._consolidate([self.recursive_tensorize(substruct) for substruct in data_struct]) return self._tensorize(data_struct) def recursive_tensorize(self, data_struct: dict): return map_nested(self._recursive_tensorize, data_struct, map_list=False) def format_row(self, pa_table: pa.Table) -> Mapping: row = self.numpy_arrow_extractor().extract_row(pa_table) row = self.python_features_decoder.decode_row(row) return self.recursive_tensorize(row) def format_column(self, pa_table: pa.Table) -> "tf.Tensor": column = self.numpy_arrow_extractor().extract_column(pa_table) column = self.python_features_decoder.decode_column(column, pa_table.column_names[0]) column = self.recursive_tensorize(column) column = self._consolidate(column) return column def format_batch(self, pa_table: pa.Table) -> Mapping: batch = self.numpy_arrow_extractor().extract_batch(pa_table) batch = self.python_features_decoder.decode_batch(batch) batch = self.recursive_tensorize(batch) for column_name in batch: batch[column_name] = self._consolidate(batch[column_name]) return batch
Memory