from typing import Dict, Optional, Tuple from rapidfuzz.distance import Levenshtein from unstructured.cleaners.core import clean_bullets, remove_sentence_punctuation def calculate_accuracy( output: Optional[str], source: Optional[str], weights: Tuple[int, int, int] = (2, 1, 1), ) -> float: """ Calculates accuracy by calling calculate_edit_distance function using `return_as=score`. The function will return complement of the edit distance instead. """ return calculate_edit_distance(output, source, weights, return_as="score") def calculate_edit_distance( output: Optional[str], source: Optional[str], weights: Tuple[int, int, int] = (2, 1, 1), return_as: str = "distance", standardize_whitespaces: bool = True, ) -> float: """ Calculates edit distance using Levenshtein distance between two strings. Args: output (str): The target string to be compared. source (str): The reference string against which 'output' is compared. weights (Tuple[int, int, int], optional): A tuple containing weights for insertion, deletion, and substitution operations in the edit distance calculation. Default is (2, 1, 1). return_as (str, optional): The type of result to return, one of ["score", "distance"]. Default is "distance". Returns: float: The calculated edit distance or similarity score between the 'output' and 'source' strings. Raises: ValueError: If 'return_as' is not one of the valid return types ["score", "distance"]. Note: This function calculates the edit distance (or similarity score) between two strings using the Levenshtein distance algorithm. The 'weights' parameter allows customizing the cost of insertion, deletion, and substitution operations. The 'return_as' parameter determines the type of result to return: - "score": Returns the similarity score, where 1.0 indicates a perfect match. - "distance": Returns the raw edit distance value. """ return_types = ["score", "distance"] if return_as not in return_types: raise ValueError("Invalid return value type. Expected one of: %s" % return_types) output = standardize_quotes(prepare_str(output, standardize_whitespaces)) source = standardize_quotes(prepare_str(source, standardize_whitespaces)) distance = Levenshtein.distance(output, source, weights=weights) # type: ignore # lower bounded the char length for source string at 1.0 because to avoid division by zero # in the case where source string is empty, the distance should be at 100% source_char_len = max(len(source), 1.0) # type: ignore bounded_percentage_distance = min(max(distance / source_char_len, 0.0), 1.0) if return_as == "score": return 1 - bounded_percentage_distance elif return_as == "distance": return distance return 0.0 def bag_of_words(text: str) -> Dict[str, int]: """ Outputs the bag of words (BOW) found in the input text and their frequencies. Takes "clean, concatenated text" (CCT) from a document as input. Removes sentence punctuation, but not punctuation within a word (ex. apostrophes). """ bow: Dict[str, int] = {} incorrect_word: str = "" words = clean_bullets(remove_sentence_punctuation(text.lower(), ["-", "'"])).split() i = 0 while i < len(words): if len(words[i]) > 1: if words[i] in bow: bow[words[i]] += 1 else: bow[words[i]] = 1 i += 1 else: j = i incorrect_word = "" while j < len(words) and len(words[j]) == 1: incorrect_word += words[j] j += 1 if len(incorrect_word) == 1 and words[i].isalnum(): if incorrect_word in bow: bow[incorrect_word] += 1 else: bow[incorrect_word] = 1 i = j return bow def calculate_percent_missing_text( output: Optional[str], source: Optional[str], ) -> float: """ Creates the bag of words (BOW) found in each input text and their frequencies, then compares the output BOW against the source BOW to calculate the % of text from the source text missing from the output text. Takes "clean, concatenated text" (CCT) from a document output and the ground truth source text as inputs. If the output text contains all words from the source text and then some extra, result will be 0% missing text - this calculation does not penalize duplication. A spaced-out word (ex. h e l l o) is considered missing; individual characters of a word will not be counted as separate words. Returns the percentage of missing text represented as a decimal between 0 and 1. """ output = prepare_str(output) source = prepare_str(source) output_bow = bag_of_words(output) source_bow = bag_of_words(source) # get total words in source bow while counting missing words total_source_word_count = 0 total_missing_word_count = 0 for source_word, source_count in source_bow.items(): total_source_word_count += source_count if source_word not in output_bow: # entire count is missing total_missing_word_count += source_count else: output_count = output_bow[source_word] total_missing_word_count += max(source_count - output_count, 0) # calculate percent missing text if total_source_word_count == 0: return 0 # nothing missing because nothing in source document fraction_missing = round(total_missing_word_count / total_source_word_count, 3) return min(fraction_missing, 1) # limit to 100% def prepare_str(string: Optional[str], standardize_whitespaces: bool = False) -> str: if not string: return "" if standardize_whitespaces: return " ".join(string.split()) return str(string) # type: ignore def standardize_quotes(text: str) -> str: """ Converts all unicode quotes to standard ASCII quotes with comprehensive coverage. Args: text (str): The input text to be standardized. Returns: str: The text with standardized quotes. """ # Double Quotes Dictionary double_quotes = { '"': "U+0022", # noqa 601 # Standard typewriter/programmer's quote '"': "U+201C", # noqa 601 # Left double quotation mark '"': "U+201D", # noqa 601 # Right double quotation mark "„": "U+201E", # Double low-9 quotation mark "‟": "U+201F", # Double high-reversed-9 quotation mark "«": "U+00AB", # Left-pointing double angle quotation mark "»": "U+00BB", # Right-pointing double angle quotation mark "❝": "U+275D", # Heavy double turned comma quotation mark ornament "❞": "U+275E", # Heavy double comma quotation mark ornament "⹂": "U+2E42", # Double low-reversed-9 quotation mark "🙶": "U+1F676", # SANS-SERIF HEAVY DOUBLE TURNED COMMA QUOTATION MARK ORNAMENT "🙷": "U+1F677", # SANS-SERIF HEAVY DOUBLE COMMA QUOTATION MARK ORNAMENT "🙸": "U+1F678", # SANS-SERIF HEAVY LOW DOUBLE COMMA QUOTATION MARK ORNAMENT "⠦": "U+2826", # Braille double closing quotation mark "⠴": "U+2834", # Braille double opening quotation mark "〝": "U+301D", # REVERSED DOUBLE PRIME QUOTATION MARK "〞": "U+301E", # DOUBLE PRIME QUOTATION MARK "〟": "U+301F", # LOW DOUBLE PRIME QUOTATION MARK """: "U+FF02", # FULLWIDTH QUOTATION MARK ",,": "U+275E", # LOW HEAVY DOUBLE COMMA ORNAMENT } # Single Quotes Dictionary single_quotes = { "'": "U+0027", # noqa 601 # Standard typewriter/programmer's quote "'": "U+2018", # noqa 601 # Left single quotation mark "'": "U+2019", # noqa 601 # Right single quotation mark # noqa: W605 "‚": "U+201A", # Single low-9 quotation mark "‛": "U+201B", # Single high-reversed-9 quotation mark "‹": "U+2039", # Single left-pointing angle quotation mark "›": "U+203A", # Single right-pointing angle quotation mark "❛": "U+275B", # Heavy single turned comma quotation mark ornament "❜": "U+275C", # Heavy single comma quotation mark ornament "「": "U+300C", # Left corner bracket "」": "U+300D", # Right corner bracket "『": "U+300E", # Left white corner bracket "』": "U+300F", # Right white corner bracket "﹁": "U+FE41", # PRESENTATION FORM FOR VERTICAL LEFT CORNER BRACKET "﹂": "U+FE42", # PRESENTATION FORM FOR VERTICAL RIGHT CORNER BRACKET "﹃": "U+FE43", # PRESENTATION FORM FOR VERTICAL LEFT WHITE CORNER BRACKET "﹄": "U+FE44", # PRESENTATION FORM FOR VERTICAL RIGHT WHITE CORNER BRACKET "'": "U+FF07", # FULLWIDTH APOSTROPHE "「": "U+FF62", # HALFWIDTH LEFT CORNER BRACKET "」": "U+FF63", # HALFWIDTH RIGHT CORNER BRACKET } double_quote_standard = '"' single_quote_standard = "'" # Apply double quote replacements for unicode_val in double_quotes.values(): unicode_char = unicode_to_char(unicode_val) if unicode_char in text: text = text.replace(unicode_char, double_quote_standard) # Apply single quote replacements for unicode_val in single_quotes.values(): unicode_char = unicode_to_char(unicode_val) if unicode_char in text: text = text.replace(unicode_char, single_quote_standard) return text def unicode_to_char(unicode_val: str) -> str: """ Converts a Unicode value to a character. Args: unicode_val (str): The Unicode value to convert. Returns: str: The character corresponding to the Unicode value. """ return chr(int(unicode_val.replace("U+", ""), 16))
Memory