import importlib from typing import TYPE_CHECKING, Any, Dict, List, Optional from packaging import version from ..utils import is_accelerate_available, is_torch_available, logging from .base import HfQuantizer from .quantizers_utils import get_module_from_name if is_torch_available(): import torch if TYPE_CHECKING: from ..modeling_utils import PreTrainedModel logger = logging.get_logger(__name__) class FineGrainedFP8HfQuantizer(HfQuantizer): """ FP8 quantization implementation supporting both standard and MoE models. Supports both e4m3fn formats based on platform. """ requires_parameters_quantization = True requires_calibration = False required_packages = ["accelerate"] def __init__(self, quantization_config, **kwargs): super().__init__(quantization_config, **kwargs) self.quantization_config = quantization_config def validate_environment(self, *args, **kwargs): if not is_torch_available() or version.parse(importlib.metadata.version("torch")) < version.parse("2.1.0"): raise ImportError( "Using fp8 quantization requires torch >= 2.1.0" "Please install the latest version of torch ( pip install --upgrade torch )" ) if not is_accelerate_available(): raise ImportError("Loading an FP8 quantized model requires accelerate (`pip install accelerate`)") if kwargs.get("from_tf", False) or kwargs.get("from_flax", False): raise ValueError( "Converting into FP8 weights from tf/flax weights is currently not supported, " "please make sure the weights are in PyTorch format." ) if not torch.cuda.is_available(): raise RuntimeError("No GPU found. A GPU is needed for FP8 quantization.") compute_capability = torch.cuda.get_device_capability() major, minor = compute_capability if (major < 8) or (major == 8 and minor < 9): raise ValueError( "FP8 quantized models is only supported on GPUs with compute capability >= 8.9 (e.g 4090/H100)" f", actual = `{major}.{minor}`" ) device_map = kwargs.get("device_map", None) if device_map is None: logger.warning_once( "You have loaded an FP8 model on CPU and have a CUDA device available, make sure to set " "your model on a GPU device in order to run your model. To remove this warning, pass device_map = 'cuda'. " ) elif device_map is not None: if ( not self.pre_quantized and isinstance(device_map, dict) and ("cpu" in device_map.values() or "disk" in device_map.values()) ): raise ValueError( "You are attempting to load an FP8 model with a device_map that contains a cpu/disk device." "This is not supported when the model is quantized on the fly. " "Please use a quantized checkpoint or remove the cpu/disk device from the device_map." ) def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": if torch_dtype is None: logger.info("Setting torch_dtype to torch.float32 as no torch_dtype was specified in from_pretrained") torch_dtype = torch.float32 return torch_dtype def create_quantized_param( self, model: "PreTrainedModel", param_value: "torch.Tensor", param_name: str, target_device: "torch.device", state_dict: Dict[str, Any], unexpected_keys: Optional[List[str]] = None, ): """ Quantizes weights to FP8 format using Block-wise quantization """ from accelerate.utils import set_module_tensor_to_device set_module_tensor_to_device(model, param_name, target_device, param_value) module, tensor_name = get_module_from_name(model, param_name) # Get FP8 min/max values fp8_min = torch.finfo(torch.float8_e4m3fn).min fp8_max = torch.finfo(torch.float8_e4m3fn).max block_size_m, block_size_n = self.quantization_config.weight_block_size rows, cols = param_value.shape[-2:] if rows % block_size_m != 0 or cols % block_size_n != 0: raise ValueError( f"Matrix dimensions ({rows}, {cols}) must be divisible by block sizes ({block_size_m}, {block_size_n})" ) param_value_orig_shape = param_value.shape param_value = param_value.reshape( -1, rows // block_size_m, block_size_m, cols // block_size_n, block_size_n ).permute(0, 1, 3, 2, 4) # Calculate scaling factor for each block max_abs = torch.amax(torch.abs(param_value), dim=(-1, -2)) scale = fp8_max / max_abs scale_orig_shape = scale.shape scale = scale.unsqueeze(-1).unsqueeze(-1) # Quantize the weights quantized_param = torch.clamp(param_value * scale, min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn) quantized_param = quantized_param.permute(0, 1, 3, 2, 4) # Reshape back to matrix shape quantized_param = quantized_param.reshape(param_value_orig_shape) # Reshape scale to match the number of blocks scale = scale.reshape(scale_orig_shape).squeeze().reciprocal() module._buffers[tensor_name] = quantized_param.to(target_device) module._buffers["weight_scale_inv"] = scale.to(target_device) def check_quantized_param( self, model: "PreTrainedModel", param_value: "torch.Tensor", param_name: str, state_dict: Dict[str, Any], **kwargs, ): from ..integrations.finegrained_fp8 import FP8Linear module, tensor_name = get_module_from_name(model, param_name) if isinstance(module, FP8Linear): if self.pre_quantized or tensor_name == "bias": if tensor_name == "weight" and param_value.dtype != torch.float8_e4m3fn: raise ValueError("Expect quantized weights but got an unquantized weight") return False else: if tensor_name == "weight_scale_inv": raise ValueError("Expect unquantized weights but got a quantized weight_scale") return True return False def _process_model_before_weight_loading( self, model: "PreTrainedModel", keep_in_fp32_modules: Optional[List[str]] = None, **kwargs, ): from ..integrations.finegrained_fp8 import replace_with_fp8_linear self.modules_to_not_convert = self.get_modules_to_not_convert( model, self.quantization_config.modules_to_not_convert, keep_in_fp32_modules ) model = replace_with_fp8_linear( model, modules_to_not_convert=self.modules_to_not_convert, quantization_config=self.quantization_config, ) model.config.quantization_config = self.quantization_config def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs): return model def update_missing_keys(self, model, missing_keys: List[str], prefix: str) -> List[str]: from ..integrations import FP8Linear not_missing_keys = [] for name, module in model.named_modules(): if isinstance(module, FP8Linear): for missing in missing_keys: if ( (name in missing or name in f"{prefix}.{missing}") and not missing.endswith(".weight") and not missing.endswith(".bias") ): not_missing_keys.append(missing) return [k for k in missing_keys if k not in not_missing_keys] def is_serializable(self, safe_serialization=None): return True @property def is_trainable(self) -> bool: return False
Memory