import math import warnings from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ...modeling_outputs import CausalLMOutput, ModelOutput, SequenceClassifierOutput, Wav2Vec2BaseModelOutput from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ..wav2vec2.modeling_wav2vec2 import ( Wav2Vec2Encoder, Wav2Vec2EncoderStableLayerNorm, Wav2Vec2FeatureEncoder, Wav2Vec2FeatureProjection, Wav2Vec2ForCTC, Wav2Vec2ForSequenceClassification, Wav2Vec2GumbelVectorQuantizer, Wav2Vec2Model, Wav2Vec2PositionalConvEmbedding, ) from .configuration_unispeech import UniSpeechConfig logger = logging.get_logger(__name__) _HIDDEN_STATES_START_POSITION = 2 # General docstring _CONFIG_FOR_DOC = "UniSpeechConfig" # Base docstring _CHECKPOINT_FOR_DOC = "patrickvonplaten/unispeech-large-1500h-cv-timit" _EXPECTED_OUTPUT_SHAPE = [1, 292, 1024] # CTC docstring _CTC_EXPECTED_OUTPUT = "'mister quilter is the apposl of the midle classes and weare glad to welcom his gosepl'" _CTC_EXPECTED_LOSS = 17.17 @dataclass class UniSpeechForPreTrainingOutput(ModelOutput): """ Output type of [`UniSpeechForPreTrainingOutput`], with potential hidden states and attentions. Args: loss (*optional*, returned when model is in train mode, `torch.FloatTensor` of shape `(1,)`): Total loss as the sum of the contrastive loss (L_m) and the diversity loss (L_d) as stated in the [official paper](https://arxiv.org/pdf/2006.11477.pdf) . (classification) loss. projected_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`): Hidden-states of the model projected to *config.proj_codevector_dim* that can be used to predict the masked projected quantized states. projected_quantized_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`): Quantized extracted feature vectors projected to *config.proj_codevector_dim* representing the positive target vectors for contrastive loss. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None projected_states: Optional[torch.FloatTensor] = None projected_quantized_states: Optional[torch.FloatTensor] = None codevector_perplexity: Optional[torch.FloatTensor] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None class UniSpeechPositionalConvEmbedding(Wav2Vec2PositionalConvEmbedding): pass class UniSpeechFeatureEncoder(Wav2Vec2FeatureEncoder): pass class UniSpeechFeatureProjection(Wav2Vec2FeatureProjection): pass class UniSpeechEncoder(Wav2Vec2Encoder): pass class UniSpeechEncoderStableLayerNorm(Wav2Vec2EncoderStableLayerNorm): pass class UniSpeechGumbelVectorQuantizer(Wav2Vec2GumbelVectorQuantizer): @staticmethod def _compute_perplexity(probs): marginal_probs = probs.mean(dim=0) perplexity = torch.exp(-torch.sum(marginal_probs * torch.log(marginal_probs + 1e-7), dim=-1)).sum() return perplexity def forward(self, hidden_states): batch_size, sequence_length, hidden_size = hidden_states.shape # project to codevector dim hidden_states = self.weight_proj(hidden_states) hidden_states = hidden_states.view(batch_size * sequence_length * self.num_groups, -1) if self.training: # sample code vector probs via gumbel in differentiateable way codevector_probs = nn.functional.gumbel_softmax( hidden_states.float(), tau=self.temperature, hard=True ).type_as(hidden_states) # compute perplexity codevector_soft_dist = torch.softmax( hidden_states.view(batch_size * sequence_length, self.num_groups, -1).float(), dim=-1 ) perplexity = self._compute_perplexity(codevector_soft_dist) else: # take argmax in non-differentiable way # comptute hard codevector distribution (one hot) codevector_idx = hidden_states.argmax(dim=-1) codevector_probs = hidden_states.new_zeros(*hidden_states.shape).scatter_( -1, codevector_idx.view(-1, 1), 1.0 ) codevector_probs = codevector_probs.view(batch_size * sequence_length, self.num_groups, -1) perplexity = self._compute_perplexity(codevector_probs) codevector_probs = codevector_probs.view(batch_size * sequence_length, -1) # use probs to retrieve codevectors codevectors_per_group = codevector_probs.unsqueeze(-1) * self.codevectors codevectors = codevectors_per_group.view(batch_size * sequence_length, self.num_groups, self.num_vars, -1) codevectors = codevectors.sum(-2).view(batch_size, sequence_length, -1) return codevectors, perplexity class UniSpeechPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = UniSpeechConfig base_model_prefix = "unispeech" main_input_name = "input_values" supports_gradient_checkpointing = True _supports_flash_attn_2 = True _supports_sdpa = True def _init_weights(self, module): """Initialize the weights""" # gumbel softmax requires special init if isinstance(module, UniSpeechGumbelVectorQuantizer): module.weight_proj.weight.data.normal_(mean=0.0, std=1) module.weight_proj.bias.data.zero_() nn.init.uniform_(module.codevectors) elif isinstance(module, UniSpeechPositionalConvEmbedding): nn.init.normal_( module.conv.weight, mean=0, std=2 * math.sqrt(1 / (module.conv.kernel_size[0] * module.conv.in_channels)), ) nn.init.constant_(module.conv.bias, 0) elif isinstance(module, UniSpeechFeatureProjection): k = math.sqrt(1 / module.projection.in_features) nn.init.uniform_(module.projection.weight, a=-k, b=k) nn.init.uniform_(module.projection.bias, a=-k, b=k) elif isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, nn.Conv1d): nn.init.kaiming_normal_(module.weight) if module.bias is not None: k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0])) nn.init.uniform_(module.bias, a=-k, b=k) def _get_feat_extract_output_lengths(self, input_lengths: Union[torch.LongTensor, int]): """ Computes the output length of the convolutional layers """ def _conv_out_length(input_length, kernel_size, stride): # 1D convolutional layer output length formula taken # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html return torch.div(input_length - kernel_size, stride, rounding_mode="floor") + 1 for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride): input_lengths = _conv_out_length(input_lengths, kernel_size, stride) return input_lengths def _get_feature_vector_attention_mask(self, feature_vector_length: int, attention_mask: torch.LongTensor): # Effectively attention_mask.sum(-1), but not inplace to be able to run # on inference mode. non_padded_lengths = attention_mask.cumsum(dim=-1)[:, -1] output_lengths = self._get_feat_extract_output_lengths(non_padded_lengths).to(torch.long) batch_size = attention_mask.shape[0] attention_mask = torch.zeros( (batch_size, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device ) # these two operations makes sure that all values before the output lengths idxs are attended to attention_mask[(torch.arange(attention_mask.shape[0], device=attention_mask.device), output_lengths - 1)] = 1 attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() return attention_mask UNISPEECH_START_DOCSTRING = r""" UniSpeech was proposed in [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving etc.). This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`UniSpeechConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ UNISPEECH_INPUTS_DOCSTRING = r""" Args: input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and conversion into a tensor of type `torch.FloatTensor`. See [`Wav2Vec2Processor.__call__`] for details. attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) <Tip warning={true}> `attention_mask` should only be passed if the corresponding processor has `config.return_attention_mask == True`. For all models whose processor has `config.return_attention_mask == False`, `attention_mask` should **not** be passed to avoid degraded performance when doing batched inference. For such models `input_values` should simply be padded with 0 and passed without `attention_mask`. Be aware that these models also yield slightly different results depending on whether `input_values` is padded or not. </Tip> output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ UniSpeechBaseModelOutput = Wav2Vec2BaseModelOutput @add_start_docstrings( "The bare UniSpeech Model transformer outputting raw hidden-states without any specific head on top.", UNISPEECH_START_DOCSTRING, ) class UniSpeechModel(UniSpeechPreTrainedModel, Wav2Vec2Model): def __init__(self, config: UniSpeechConfig): UniSpeechPreTrainedModel.__init__(config) self.config = config self.feature_extractor = UniSpeechFeatureEncoder(config) self.feature_projection = UniSpeechFeatureProjection(config) if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0: self.masked_spec_embed = nn.Parameter(torch.Tensor(config.hidden_size).uniform_()) if config.do_stable_layer_norm: self.encoder = UniSpeechEncoderStableLayerNorm(config) else: self.encoder = UniSpeechEncoder(config) # Initialize weights and apply final processing self.post_init() def freeze_feature_extractor(self): raise AttributeError("Not needed for UniSpeech") def freeze_feature_encoder(self): raise AttributeError("Not needed for UniSpeech") @add_start_docstrings_to_model_forward(UNISPEECH_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=UniSpeechBaseModelOutput, config_class=_CONFIG_FOR_DOC, modality="audio", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, mask_time_indices: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, UniSpeechBaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict extract_features = self.feature_extractor(input_values) extract_features = extract_features.transpose(1, 2) if attention_mask is not None: # compute reduced attention_mask corresponding to feature vectors attention_mask = self._get_feature_vector_attention_mask(extract_features.shape[1], attention_mask) hidden_states, extract_features = self.feature_projection(extract_features) hidden_states = self._mask_hidden_states( hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask ) encoder_outputs = self.encoder( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = encoder_outputs[0] if not return_dict: return (hidden_states, extract_features) + encoder_outputs[1:] return UniSpeechBaseModelOutput( last_hidden_state=hidden_states, extract_features=extract_features, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings( """UniSpeech Model with a vector-quantization module and ctc loss for pre-training.""", UNISPEECH_START_DOCSTRING ) class UniSpeechForPreTraining(UniSpeechPreTrainedModel): def __init__(self, config: UniSpeechConfig): super().__init__(config) self.unispeech = UniSpeechModel(config) self.dropout_features = nn.Dropout(config.feat_quantizer_dropout) self.quantizer = UniSpeechGumbelVectorQuantizer(config) self.project_q = nn.Linear(config.codevector_dim, config.proj_codevector_dim) self.project_hid = nn.Linear(config.proj_codevector_dim, config.hidden_size) self.ctc_proj = nn.Linear(config.hidden_size, config.num_ctc_classes) self.dropout = nn.Dropout(config.final_dropout) # Initialize weights and apply final processing self.post_init() def set_gumbel_temperature(self, temperature: int): """ Set the Gumbel softmax temperature to a given value. Only necessary for training """ self.quantizer.temperature = temperature def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameters will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.unispeech.feature_extractor._freeze_parameters() @staticmethod def compute_contrastive_logits( target_features: torch.FloatTensor, negative_features: torch.FloatTensor, predicted_features: torch.FloatTensor, temperature: int = 1, ): """ Compute logits for contrastive loss based using cosine similarity as the distance measure between `[positive_feature, negative_features]` and `[predicted_features]`. Additionally, temperature can be applied. """ target_features = torch.cat([target_features, negative_features], dim=0) logits = torch.cosine_similarity(predicted_features.float(), target_features.float(), dim=-1) logits = logits.type_as(target_features) # apply temperature logits = logits / temperature return logits @add_start_docstrings_to_model_forward(UNISPEECH_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=UniSpeechForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, UniSpeechForPreTrainingOutput]: r""" mask_time_indices (`torch.BoolTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices to mask extracted features for contrastive loss. When in training mode, model learns to predict masked extracted features in *config.proj_codevector_dim* space. sampled_negative_indices (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_negatives)`, *optional*): Indices indicating which quantized target vectors are used as negative sampled vectors in contrastive loss. Required input for pre-training. Returns: Example: ```python >>> import torch >>> from transformers import AutoFeatureExtractor, UniSpeechForPreTraining >>> feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/unispeech-large-1500h-cv") >>> model = UniSpeechForPreTraining.from_pretrained("microsoft/unispeech-large-1500h-cv") >>> # TODO: Add full pretraining example ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.unispeech( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) transformer_features = outputs[0] # quantize all (unmasked) extracted features and project to final vq dim extract_features = self.dropout_features(outputs[1]) quantized_features, codevector_perplexity = self.quantizer(extract_features) # project quantized features twice quantized_features = self.project_q(quantized_features.to(self.project_q.weight.dtype)) quantized_features = self.project_hid(quantized_features) prob_replace_matrix = torch.empty(transformer_features.size(0), transformer_features.size(1)).fill_( self.config.replace_prob ) prob_replace_matrix = prob_replace_matrix.transpose(0, 1) sampled_replace_matrix = torch.bernoulli(prob_replace_matrix).bool().to(transformer_features.device) sampled_replace_matrix = sampled_replace_matrix.transpose(0, 1) sampled_replace_matrix = sampled_replace_matrix.unsqueeze(-1) logits = transformer_features.masked_fill(sampled_replace_matrix, 0.0) + ( quantized_features.masked_fill(~sampled_replace_matrix, 0.0) ) # project to ctc units logits = self.dropout(logits) logits = self.ctc_proj(logits) # TODO(PVP) - add negative sampling & loss computation loss = None if not return_dict: if loss is not None: return (loss, transformer_features, quantized_features, codevector_perplexity) + outputs[2:] return (transformer_features, quantized_features, codevector_perplexity) + outputs[2:] return UniSpeechForPreTrainingOutput( loss=loss, projected_states=transformer_features, projected_quantized_states=quantized_features, codevector_perplexity=codevector_perplexity, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """UniSpeech Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).""", UNISPEECH_START_DOCSTRING, """ target_lang (`str`, *optional*): Language id of adapter weights. Adapter weights are stored in the format adapter.<lang>.safetensors or adapter.<lang>.bin. Only relevant when using an instance of [`UniSpeechForCTC`] with adapters. Uses 'eng' by default. """, ) class UniSpeechForCTC(Wav2Vec2ForCTC): @add_start_docstrings_to_model_forward(UNISPEECH_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=CausalLMOutput, config_class=_CONFIG_FOR_DOC, expected_output=_CTC_EXPECTED_OUTPUT, expected_loss=_CTC_EXPECTED_LOSS, ) def forward(self, **super_kwargs): super().forward(**super_kwargs) @add_start_docstrings( """ UniSpeech Model with a sequence classification head on top (a linear layer over the pooled output) for tasks like SUPERB Keyword Spotting. """, UNISPEECH_START_DOCSTRING, ) class UniSpeechForSequenceClassification(Wav2Vec2ForSequenceClassification): @add_start_docstrings_to_model_forward(UNISPEECH_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, modality="audio", ) def forward(self, **super_kwargs): super().forward(**super_kwargs) __all__ = [ "UniSpeechForCTC", "UniSpeechForPreTraining", "UniSpeechForSequenceClassification", "UniSpeechModel", "UniSpeechPreTrainedModel", ]
Memory