from typing import Callable, Optional, Tuple import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint from ...cache_utils import Cache from ...modeling_utils import ALL_ATTENTION_FUNCTIONS from ...utils import logging from ..llama.modeling_llama import ( LlamaAttention, LlamaDecoderLayer, LlamaForCausalLM, LlamaMLP, LlamaModel, apply_rotary_pos_emb, eager_attention_forward, ) from .configuration_olmo import OlmoConfig logger = logging.get_logger(__name__) class OlmoLayerNorm(nn.Module): """LayerNorm but with no learnable weight or bias.""" def __init__(self, hidden_size: int) -> None: super().__init__() self.normalized_shape = (hidden_size,) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: orig_dtype = hidden_states.dtype return F.layer_norm(hidden_states.to(dtype=torch.float32), self.normalized_shape, None, None, eps=1e-5).to( orig_dtype ) class OlmoMLP(LlamaMLP): def __init__(self, config): super().__init__(config) self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) class OlmoAttention(LlamaAttention): def forward( self, hidden_states: torch.Tensor, position_embeddings: Tuple[torch.Tensor, torch.Tensor], attention_mask: Optional[torch.Tensor], past_key_value: Optional[Cache] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: input_shape = hidden_states.shape[:-1] hidden_shape = (*input_shape, -1, self.head_dim) query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) if self.config.clip_qkv is not None: query_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv) key_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv) value_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv) query_states = query_states.view(hidden_shape).transpose(1, 2) key_states = key_states.view(hidden_shape).transpose(1, 2) value_states = value_states.view(hidden_shape).transpose(1, 2) cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False): logger.warning_once( "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to " 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) else: attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=0.0 if not self.training else self.attention_dropout, scaling=self.scaling, **kwargs, ) attn_output = attn_output.reshape(*input_shape, -1).contiguous() attn_output = self.o_proj(attn_output) return attn_output, attn_weights class OlmoDecoderLayer(LlamaDecoderLayer): def __init__(self, config: OlmoConfig, layer_idx: int): super().__init__(config, layer_idx) self.input_layernorm = OlmoLayerNorm(config.hidden_size) self.post_attention_layernorm = OlmoLayerNorm(config.hidden_size) self.self_attn = OlmoAttention(config=config, layer_idx=layer_idx) class OlmoModel(LlamaModel): def __init__(self, config: OlmoConfig): super().__init__(config) self.layers = nn.ModuleList( [OlmoDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.norm = OlmoLayerNorm(config.hidden_size) class OlmoForCausalLM(LlamaForCausalLM): pass
Memory