# coding=utf-8 # Copyright 2024 HuggingFace Inc. team. All rights reserved. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from functools import cached_property from typing import List, Optional, Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint from ...cache_utils import Cache from ...generation import GenerationMixin from ...modeling_outputs import ( CausalLMOutputWithPast, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_start_docstrings, add_start_docstrings_to_model_forward, can_return_tuple, logging, replace_return_docstrings, ) from ...utils.deprecation import deprecate_kwarg from ..chameleon.modeling_chameleon import ( ChameleonPreTrainedModel, ChameleonVQVAEEncoderConvDownsample, ) from ..llama.modeling_llama import ( LlamaDecoderLayer, LlamaForCausalLM, LlamaModel, ) from ..siglip.modeling_siglip import SiglipAttention from .configuration_emu3 import Emu3Config, Emu3TextConfig, Emu3VQVAEConfig _CONFIG_FOR_DOC = "Emu3Config" _CHECKPOINT_FOR_DOC = "BAAI/Emu3-Chat-hf" logger = logging.get_logger(__name__) # Has extra dropout which no other model in the library has class Emu3DecoderLayer(LlamaDecoderLayer): def __init__(self, config: Emu3Config, layer_idx: int): super().__init__(config, layer_idx) self.dropout = nn.Dropout(config.attention_dropout) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, **kwargs, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1, query_sequence_length, key_sequence_length)` if default attention is used. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence kwargs (`dict`, *optional*): Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code into the model """ residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **kwargs, ) hidden_states = residual + self.dropout(hidden_states) # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + self.dropout(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) return outputs class Emu3VQVAEVectorQuantizer(nn.Module): """ A module for vector quantization using learned embedding vectors. This module implements the quantization process similar to te one described in the VQ-VAE (Vector Quantized Variational AutoEncoder) paper. It quantizes continuous input vectors into discrete codebook vectors, which are learned during training. Current implementation improves over previous ones by avoiding costly matrix multiplications and allowing for post-hoc remapping of indices. """ def __init__(self, config: Emu3VQVAEConfig): super().__init__() self.embedding = nn.Embedding(config.codebook_size, config.embed_dim) self.embedding.weight.data.uniform_(-1.0 / config.codebook_size, 1.0 / config.codebook_size) def forward(self, hidden_state: torch.Tensor): batch_size, temporal, channels, height, width = hidden_state.shape hidden_state = hidden_state.permute(0, 1, 3, 4, 2).contiguous() hidden_state_flattened = hidden_state.view(-1, channels) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z hidden_state_sum = torch.sum(hidden_state_flattened**2, dim=1, keepdim=True) embedding_sum = torch.sum(self.embedding.weight**2, dim=1) # "bd,dn->bn", distances = 2 * torch.matmul(hidden_state_flattened, self.embedding.weight.transpose(0, 1)) distances = hidden_state_sum + embedding_sum - distances min_encoding_indices = torch.argmin(distances, dim=1) min_encoding_indices = min_encoding_indices.view(batch_size, temporal, height, width) return min_encoding_indices class Emu3VQVAEEncoderConvDownsample(ChameleonVQVAEEncoderConvDownsample): pass class Emu3VQVAEEncoderConvUpsample(nn.Module): def __init__(self, in_channels): super().__init__() self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) def forward(self, hidden_states): hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest") hidden_states = self.conv(hidden_states) return hidden_states class Emu3VQVAEConv3d(nn.Module): def __init__( self, in_channel: int, out_channel: int, kernel_size: Tuple[int], stride: Tuple[int], ): super().__init__() padding_sizes = [one_kernel - one_stride for one_kernel, one_stride in zip(kernel_size[1:], stride[1:])] self.padding = () for pad_size in padding_sizes[::-1]: self.padding += (pad_size // 2 + pad_size % 2, pad_size // 2) self.padding += (2, 0) self.conv = nn.Conv3d( in_channel, out_channel, kernel_size, stride=stride, ) def forward(self, hidden_states: torch.Tensor): hidden_states = F.pad(hidden_states, self.padding) hidden_states = self.conv(hidden_states) return hidden_states class Emu3VQVAESpatialNorm(nn.Module): def __init__( self, in_channels: int, out_channels: int, ): super().__init__() self.norm_layer = nn.GroupNorm( num_channels=out_channels, num_groups=32, eps=1e-6, affine=True, ) self.conv_y = nn.Conv2d( in_channels, out_channels, kernel_size=1, stride=1, padding=0, ) self.conv_b = nn.Conv2d( in_channels, out_channels, kernel_size=1, stride=1, padding=0, ) def forward(self, hidden_states: torch.Tensor, quant_states: torch.Tensor): quant_states = F.interpolate(quant_states, size=hidden_states.shape[-2:], mode="nearest") hidden_states = self.norm_layer(hidden_states) hidden_states = hidden_states * self.conv_y(quant_states) + self.conv_b(quant_states) return hidden_states class Emu3VQVAETemporalUpsample(nn.Module): def __init__( self, in_channel: int, out_channel: int, ): super().__init__() self.conv = Emu3VQVAEConv3d( in_channel, out_channel, kernel_size=(3, 3, 3), stride=(1, 1, 1), ) def forward(self, hidden_states: torch.Tensor): batch_size, channels, temporal, height, width = hidden_states.shape hidden_states = hidden_states.permute(0, 1, 3, 4, 2).contiguous().view(batch_size, -1, temporal) hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest") hidden_states = hidden_states.view(batch_size, channels, height, width, -1).permute(0, 1, 4, 2, 3).contiguous() hidden_states = self.conv(hidden_states) return hidden_states class Emu3VQVAETemporalDownsample(nn.Module): def __init__( self, in_channel: int, out_channel: int, ): super().__init__() self.conv = Emu3VQVAEConv3d( in_channel, out_channel, kernel_size=(4, 3, 3), stride=(2, 1, 1), ) def forward(self, hidden_states: torch.Tensor): hidden_states = self.conv(hidden_states) return hidden_states class Emu3VQVAETemporalResnetBlock(nn.Module): def __init__( self, in_channels, out_channels=None, ): super().__init__() self.in_channels = in_channels self.out_channels = in_channels if out_channels is None else out_channels self.norm1 = nn.BatchNorm3d(in_channels) self.conv1 = Emu3VQVAEConv3d( in_channels, out_channels, kernel_size=(3, 3, 3), stride=(1, 1, 1), ) self.norm2 = nn.BatchNorm3d(out_channels) self.conv2 = Emu3VQVAEConv3d( out_channels, out_channels, kernel_size=(3, 3, 3), stride=(1, 1, 1), ) if self.in_channels != self.out_channels: self.nin_shortcut = nn.Conv3d( in_channels, out_channels, kernel_size=1, stride=1, padding=0, ) def forward(self, hidden_states): residual = hidden_states hidden_states = self.norm1(hidden_states) hidden_states *= torch.sigmoid(hidden_states) hidden_states = self.conv1(hidden_states) hidden_states = self.norm2(hidden_states) hidden_states *= torch.sigmoid(hidden_states) hidden_states = self.conv2(hidden_states) if self.in_channels != self.out_channels: residual = self.nin_shortcut(residual) return residual + hidden_states class Emu3VQVAEResnetBlock(nn.Module): def __init__( self, in_channels: int, out_channels: Optional[int] = None, quant_channels: Optional[int] = None, ): super().__init__() self.in_channels = in_channels out_channels = in_channels if out_channels is None else out_channels self.out_channels = out_channels self.quant_channels = quant_channels if quant_channels is None: self.norm1 = nn.GroupNorm(num_channels=in_channels, num_groups=32, eps=1e-6, affine=True) self.norm2 = nn.GroupNorm(num_channels=out_channels, num_groups=32, eps=1e-6, affine=True) else: self.norm1 = Emu3VQVAESpatialNorm(quant_channels, in_channels) self.norm2 = Emu3VQVAESpatialNorm(quant_channels, out_channels) self.conv1 = nn.Conv2d( in_channels, out_channels, kernel_size=3, stride=1, padding=1, ) self.conv2 = nn.Conv2d( out_channels, out_channels, kernel_size=3, stride=1, padding=1, ) if self.in_channels != self.out_channels: self.nin_shortcut = nn.Conv2d( in_channels, out_channels, kernel_size=1, stride=1, padding=0, ) def forward(self, hidden_states: torch.Tensor, quant_channels: Optional[torch.Tensor] = None): norm_args = () if self.quant_channels is None else (quant_channels,) residual = hidden_states hidden_states = self.norm1(hidden_states, *norm_args) hidden_states *= torch.sigmoid(hidden_states) hidden_states = self.conv1(hidden_states) hidden_states = self.norm2(hidden_states, *norm_args) hidden_states *= torch.sigmoid(hidden_states) hidden_states = self.conv2(hidden_states) if self.in_channels != self.out_channels: residual = self.nin_shortcut(residual) return residual + hidden_states class Emu3VQVAEAttentionBlock(SiglipAttention): def __init__(self, config: Emu3VQVAEConfig): super().__init__(config) # for compatibility with the attention interface self.num_key_value_groups = 1 class Emu3VQVAEGroupNorm(nn.GroupNorm): """ Same as the torch GroupNorm with the only difference that this ones accepts an optional kwarg `quant_states` which is not used. This class makes it easier to use SpatialNorm or GroupNorm without conditionals """ def __init__(self, **kwargs): super().__init__(**kwargs) def forward(self, input, quant_states=None): return F.group_norm(input, self.num_groups, self.weight, self.bias, self.eps) class Emu3VQVAEMiddleBlock(nn.Module): def __init__(self, config, in_channels, quant_channels=None): super().__init__() self.block_1 = Emu3VQVAEResnetBlock( in_channels=in_channels, out_channels=in_channels, quant_channels=quant_channels, ) self.attn_1 = Emu3VQVAEAttentionBlock(config) if quant_channels is None: self.attn_norm = Emu3VQVAEGroupNorm(num_channels=in_channels, num_groups=32, eps=1e-6, affine=True) else: self.attn_norm = Emu3VQVAESpatialNorm(quant_channels, in_channels) self.block_2 = Emu3VQVAEResnetBlock( in_channels=in_channels, out_channels=in_channels, quant_channels=quant_channels, ) def forward(self, hidden_states: torch.FloatTensor, quant_states: Optional[torch.FloatTensor] = None): hidden_states = self.block_1(hidden_states, quant_states) residual = hidden_states hidden_states = self.attn_norm(hidden_states, quant_states) batch_size, channels, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channels, height * width).transpose(1, 2) hidden_states = self.attn_1(hidden_states)[0] hidden_states = hidden_states.reshape(batch_size, height, width, channels).permute(0, 3, 1, 2) hidden_states = residual + hidden_states hidden_states = self.block_2(hidden_states, quant_states) return hidden_states class Emu3VQVAEDownBlock(nn.Module): def __init__(self, config): super().__init__() self.num_resolutions = len(config.channel_multiplier) self.num_res_blocks = config.num_res_blocks base_channels = config.base_channels channel_multiplier = config.channel_multiplier in_channel_multiplier = (1,) + tuple(channel_multiplier) self.in_channel_multiplier = in_channel_multiplier self.down = nn.ModuleList() for i_level in range(self.num_resolutions): block = nn.ModuleList() attn = nn.ModuleList() attn_norms = nn.ModuleList() block_in = base_channels * in_channel_multiplier[i_level] block_out = base_channels * channel_multiplier[i_level] for i_block in range(self.num_res_blocks): block.append( Emu3VQVAEResnetBlock( in_channels=block_in, out_channels=block_out, ) ) block_in = block_out if config.attn_resolutions is not None and i_level in config.attn_resolutions: attn.append(Emu3VQVAEAttentionBlock(config)) attn_norms.append(nn.GroupNorm(num_channels=block_in, num_groups=32, eps=1e-6, affine=True)) down = nn.Module() down.block = block down.attn = attn down.attn_norms = attn_norms if i_level != self.num_resolutions - 1: down.downsample = Emu3VQVAEEncoderConvDownsample(block_in) self.down.append(down) def forward(self, hidden_states: torch.FloatTensor): for i_level, blocks in enumerate(self.down): for i_block in range(self.num_res_blocks): hidden_states = blocks.block[i_block](hidden_states) if len(blocks.attn) > 0: residual = hidden_states hidden_states = blocks.attn_norms[i_block](hidden_states) batch_size, channels, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channels, height * width).transpose(1, 2) hidden_states = blocks.attn[i_block](hidden_states)[0] hidden_states = hidden_states.reshape(batch_size, height, width, channels).permute(0, 3, 1, 2) hidden_states = residual + hidden_states if i_level != self.num_resolutions - 1: hidden_states = blocks.downsample(hidden_states) return hidden_states class Emu3VQVAEUpBlock(nn.Module): def __init__(self, config): super().__init__() self.num_resolutions = len(config.channel_multiplier) self.num_res_blocks = config.num_res_blocks quant_channels = config.embed_dim block_in = config.base_channels * config.channel_multiplier[-1] self.up = nn.ModuleList() for i_level in reversed(range(self.num_resolutions)): block = nn.ModuleList() attn = nn.ModuleList() attn_norms = nn.ModuleList() block_out = config.base_channels * config.channel_multiplier[i_level] for i_block in range(self.num_res_blocks + 1): block.append( Emu3VQVAEResnetBlock( in_channels=block_in, out_channels=block_out, quant_channels=quant_channels, ) ) block_in = block_out if i_level in config.attn_resolutions: attn.append(Emu3VQVAEAttentionBlock(config)) attn_norms.append(Emu3VQVAESpatialNorm(quant_channels, block_in)) up = nn.Module() up.block = block up.attn = attn up.attn_norms = attn_norms if i_level != 0: up.upsample = Emu3VQVAEEncoderConvUpsample(block_in) self.up.insert(0, up) def forward(self, hidden_states: torch.FloatTensor, quant_states: torch.FloatTensor): for i_level, blocks in enumerate(self.up[::-1]): for i_block in range(self.num_res_blocks + 1): hidden_states = blocks.block[i_block](hidden_states, quant_states) if len(blocks.attn) > 0: residual = hidden_states hidden_states = blocks.attn_norms[i_block](hidden_states, quant_states) batch_size, channels, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channels, height * width).transpose(1, 2) hidden_states = blocks.attn[i_block](hidden_states)[0] hidden_states = hidden_states.reshape(batch_size, height, width, channels).permute(0, 3, 1, 2) hidden_states = residual + hidden_states if i_level != len(self.up) - 1: hidden_states = blocks.upsample(hidden_states) return hidden_states class Emu3VQVAEEncoder(nn.Module): def __init__(self, config): super().__init__() base_channels = config.base_channels in_channels = config.in_channels double_latent = config.double_latent latent_channels = config.latent_channels channel_multiplier = config.channel_multiplier out_channels = 2 * latent_channels if double_latent else latent_channels block_in = base_channels * channel_multiplier[-1] self.conv_in = torch.nn.Conv2d(in_channels, base_channels, kernel_size=3, stride=1, padding=1) self.down_block = Emu3VQVAEDownBlock(config) self.middle_block = Emu3VQVAEMiddleBlock(config, block_in) self.norm_out = torch.nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True) self.conv_out = torch.nn.Conv2d( block_in, out_channels, kernel_size=3, stride=1, padding=1, ) temporal_down_blocks = int(math.log2(config.temporal_downsample_factor)) self.time_conv = nn.ModuleList() self.time_res_stack = nn.ModuleList() for i in range(temporal_down_blocks): conv = Emu3VQVAETemporalDownsample(out_channels, out_channels) self.time_conv.append(conv) for _ in range(config.num_res_blocks): time_res_conv = Emu3VQVAETemporalResnetBlock( in_channels=out_channels, out_channels=out_channels, ) self.time_res_stack.append(time_res_conv) def forward(self, pixel_values: torch.LongTensor): temporal_dim = pixel_values.shape[1] pixel_values = pixel_values.reshape(-1, *pixel_values.shape[2:]) # downsampling & middle hidden_states = self.conv_in(pixel_values) hidden_states = self.down_block(hidden_states) hidden_states = self.middle_block(hidden_states) # end hidden_states = self.norm_out(hidden_states) hidden_states *= torch.sigmoid(hidden_states) hidden_states = self.conv_out(hidden_states) hidden_states = hidden_states.reshape(-1, temporal_dim, *hidden_states.shape[1:]) hidden_states = hidden_states.permute(0, 2, 1, 3, 4) # temporal convs for conv in self.time_conv: hidden_states = conv(hidden_states) hidden_states *= torch.sigmoid(hidden_states) for layer in self.time_res_stack: hidden_states = layer(hidden_states) hidden_states = hidden_states.permute(0, 2, 1, 3, 4) return hidden_states class Emu3VQVAEDecoder(nn.Module): def __init__(self, config: Emu3VQVAEConfig): super().__init__() quant_channels = config.embed_dim block_in = config.base_channels * config.channel_multiplier[-1] self.time_res_stack = nn.ModuleList() for _ in range(config.num_res_blocks): time_res_conv = Emu3VQVAETemporalResnetBlock( in_channels=config.latent_channels, out_channels=config.latent_channels ) self.time_res_stack.append(time_res_conv) temp_upsample_block_num = int(math.log2(config.temporal_downsample_factor)) self.time_conv = nn.ModuleList() for i in range(temp_upsample_block_num): conv = Emu3VQVAETemporalUpsample(config.latent_channels, config.latent_channels) self.time_conv.append(conv) self.conv_in = nn.Conv2d( config.latent_channels, block_in, kernel_size=3, stride=1, padding=1, ) self.middle_block = Emu3VQVAEMiddleBlock(config, block_in, quant_channels=quant_channels) self.up_block = Emu3VQVAEUpBlock(config) block_in = config.base_channels * config.channel_multiplier[0] self.norm_out = Emu3VQVAESpatialNorm(quant_channels, block_in) self.conv_out = nn.Conv2d( block_in, config.out_channels, kernel_size=3, stride=1, padding=1, ) def forward(self, hidden_states: torch.Tensor, quant_states: torch.Tensor): hidden_quant_states = torch.cat((hidden_states, quant_states), dim=0) hidden_quant_states = hidden_quant_states.permute(0, 2, 1, 3, 4) # temporal convs for layer in self.time_res_stack: hidden_quant_states = layer(hidden_quant_states) for layer in self.time_conv: hidden_quant_states = layer(hidden_quant_states) hidden_quant_states *= torch.sigmoid(hidden_quant_states) hidden_quant_states = hidden_quant_states.permute(0, 2, 1, 3, 4) hidden_states, quant_states = torch.chunk(hidden_quant_states, 2, dim=0) hidden_states = hidden_states.reshape(-1, *hidden_states.shape[2:]) quant_states = quant_states.reshape(-1, *quant_states.shape[2:]) hidden_states = self.conv_in(hidden_states) # middle & upsampling hidden_states = self.middle_block(hidden_states, quant_states) hidden_states = self.up_block(hidden_states, quant_states) hidden_states = self.norm_out(hidden_states, quant_states) hidden_states *= torch.sigmoid(hidden_states) hidden_states = self.conv_out(hidden_states) return hidden_states EMU3_VQ_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`Emu3VQVAEConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ @add_start_docstrings( """The VQ-VAE model used in Emu3 for encoding/decoding images into discrete tokens. This model follows the "Make-a-scene: Scene-based text-to-image generation with human priors" paper from [ Oran Gafni, Adam Polyak, Oron Ashual, Shelly Sheynin, Devi Parikh, and Yaniv Taigman](https://arxiv.org/abs/2203.13131). """, EMU3_VQ_START_DOCSTRING, ) class Emu3VQVAE(PreTrainedModel): config_class = Emu3VQVAEConfig base_model_prefix = "emuvideovq" main_input_name = "pixel_values" _supports_sdpa = True _supports_flash_attn_2 = True _supports_flex_attn = True _no_split_modules = [ "Emu3VQVAETemporalResnetBlock", "Emu3VQVAEAttentionBlock", "Emu3VQVAEResnetBlock", "Emu3VQVAEVectorQuantizer", ] def _init_weights(self, module): if isinstance(module, (nn.Conv2d, nn.Conv3d)): nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu") elif isinstance(module, nn.Linear): nn.init.kaiming_uniform_(module.weight, a=math.sqrt(5)) if module.bias is not None: fan_in, _ = nn.init._calculate_fan_in_and_fan_out(module.weight) bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0 nn.init.uniform_(module.bias, -bound, bound) elif isinstance(module, (nn.BatchNorm2d, nn.BatchNorm3d, nn.GroupNorm)): nn.init.constant_(module.weight, 1) nn.init.constant_(module.bias, 0) def __init__(self, config: Emu3VQVAEConfig): super().__init__(config) self.config = config self.encoder = Emu3VQVAEEncoder(config) self.decoder = Emu3VQVAEDecoder(config) self.quantize = Emu3VQVAEVectorQuantizer(config) self.vision_spatial_factor = 2 ** (len(config.channel_multiplier) - 1) self.quant_conv = Emu3VQVAEConv3d( config.latent_channels, config.embed_dim, kernel_size=(3, 1, 1), stride=(1, 1, 1) ) self.post_quant_conv = Emu3VQVAEConv3d( config.embed_dim, config.latent_channels, kernel_size=(3, 1, 1), stride=(1, 1, 1) ) self.spatial_scale_factor = 2 ** (len(config.channel_multiplier) - 1) self.eval() # Emu3's VQ model is frozen self.post_init() def encode(self, pixel_values: torch.Tensor, image_sizes: torch.Tensor): is_image = pixel_values.ndim == 4 if is_image: temporal = self.config.temporal_downsample_factor batch_size, channels, height, width = pixel_values.shape pixel_values = pixel_values.unsqueeze(1).repeat(1, temporal, 1, 1, 1) else: batch_size, temporal, channels, height, width = pixel_values.shape hidden_states = self.encoder(pixel_values) # b t c h w -> b c t h w hidden_states = hidden_states.permute(0, 2, 1, 3, 4) hidden_states = self.quant_conv(hidden_states) # b c t h w -> b t c h w hidden_states = hidden_states.permute(0, 2, 1, 3, 4) codes = self.quantize(hidden_states) image_tokens = codes.squeeze(1) if is_image else codes image_tokens = [ single_image[: int(size[0] / self.vision_spatial_factor), : int(size[1] / self.vision_spatial_factor)] for single_image, size in zip(image_tokens, image_sizes) ] return image_tokens def decode(self, hidden_states: torch.Tensor): is_image = hidden_states.ndim == 3 if is_image: hidden_states = hidden_states.unsqueeze(1) batch_size, temporal, height, width = hidden_states.shape quant = self.quantize.embedding(hidden_states.flatten()) channels = quant.shape[-1] quant = quant.view(batch_size, temporal, height, width, channels).permute(0, 4, 1, 2, 3).contiguous() post_quant = self.post_quant_conv(quant) quant = quant.permute(0, 2, 1, 3, 4) post_quant = post_quant.permute(0, 2, 1, 3, 4) video = self.decoder(post_quant, quant) video = video.reshape( batch_size, temporal * self.config.temporal_downsample_factor, self.config.out_channels, height * self.spatial_scale_factor, width * self.spatial_scale_factor, ) return video[:, 0] if is_image else video class Emu3ImageVocabularyMapping: """ A class for mapping discrete image tokens from VQGAN to BPE tokens. """ def __init__(self, vocab_map): self.vocab_map = vocab_map self.eol_token_id = vocab_map.get("<|extra_200|>") self.image_token_id = vocab_map.get("<image>") @cached_property def image_tokens(self): return sorted([val for name, val in self.vocab_map.items() if name.startswith("<|visual token")]) @cached_property def image_tokens_str(self): return sorted([name for name, val in self.vocab_map.items() if name.startswith("<|visual token")]) @cached_property def img2bpe(self): return {int(token[-8:-2]): self.vocab_map[token] for token in self.image_tokens_str} @cached_property def bpe2img(self): return {v: k for k, v in self.img2bpe.items()} @cached_property def bpe2img_mapping_tensor(self): mapping = torch.zeros(max(self.bpe2img.keys()) + 1, dtype=torch.int) for k, v in self.bpe2img.items(): mapping[k] = v return mapping @cached_property def img2bpe_mapping_tensor(self): mapping = torch.zeros(max(self.img2bpe.keys()) + 1, dtype=torch.int) for k, v in self.img2bpe.items(): mapping[k] = v return mapping def convert_img2bpe(self, img_batch: List[torch.Tensor]) -> torch.Tensor: device = img_batch.device eol_row = torch.ones((img_batch.shape[0], 1), dtype=torch.int) * self.eol_token_id img_tokens = self.img2bpe_mapping_tensor[img_batch.to("cpu")] img_tokens = torch.cat([img_tokens, eol_row], dim=-1) return img_tokens.to(device) def convert_bpe2img(self, img_batch: torch.Tensor) -> torch.Tensor: device = img_batch.device img_batch = img_batch[..., :-1] # remove last row of EOL tokens img_tokens = self.bpe2img_mapping_tensor[img_batch.to("cpu")] return img_tokens.to(device) class Emu3PreTrainedModel(ChameleonPreTrainedModel, Emu3VQVAE): _no_split_modules = [ "Emu3DecoderLayer", ] _supports_flex_attn = True def _init_weights(self, module): std = self.config.get_text_config().initializer_range if isinstance(module, Emu3VQVAE): module.apply(module._init_weights) elif isinstance(module, (nn.Linear, nn.Conv2d)): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() EMU3_TEXT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. If `past_key_values` is used, optionally only the last `input_ids` have to be input (see `past_key_values`). If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`Cache`, *optional*): Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. Has to be an instance of [`~cache_utils.Cache`] instance, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache). The model will output the same cache type that is fed as input. If no `past_key_values` are passed, the legacy cache format will be returned. If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length. """ EMU3_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) pixel_values (`torch.FloatTensor` of shape `(batch_size, max_num_images, max_num_tiles, channels, image_size, image_size)): The tensors corresponding to the input images. Pixel values can be obtained using [`AutoImageProcessor`]. See [`Emu3ImageProcessor.__call__`] for details ([]`Emu3Processor`] uses [`Emu3ImageProcessor`] for processing images). image_sizes (`torch.LongTensor` of shape `(batch_size, 2)`): The sizes of the images in the batch, being (height, width) for each image. Image sizes can be obtained using [`AutoImageProcessor`]. See [`Emu3ImageProcessor.__call__`] for details ([]`Emu3Processor`] uses [`Emu3ImageProcessor`] for processing images). attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. If `past_key_values` is used, optionally only the last `input_ids` have to be input (see `past_key_values`). If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. Has to be an instance of [`~cache_utils.Cache`] instance, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache). The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the legacy cache format will be returned. If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length. """ class Emu3TextModel(LlamaModel, Emu3PreTrainedModel): def __init__(self, config: Emu3Config): super().__init__(config) self.layers = nn.ModuleList( [Emu3DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) @can_return_tuple @add_start_docstrings_to_model_forward(EMU3_TEXT_INPUTS_DOCSTRING) def forward(self, **super_kwargs): super().forward(**super_kwargs) class Emu3ForCausalLM(LlamaForCausalLM, Emu3PreTrainedModel, GenerationMixin): config_class = Emu3TextConfig def __init__(self, config): super().__init__(config) self.model = Emu3TextModel(config) @can_return_tuple @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep") @add_start_docstrings_to_model_forward(EMU3_TEXT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class="Emu3TextConfig") def forward(**super_kwargs): r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. logits_to_keep (`int` or `torch.Tensor`, *optional*): If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that token can save memory, which becomes pretty significant for long sequences or large vocabulary size. If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension. This is useful when using packed tensor format (single dimension for batch and sequence length). Returns: Example: ```python >>> from transformers import Emu3Processor, Emu3ForConditionalGeneration >>> import torch >>> import requests >>> from PIL import Image >>> model = Emu3ForCausalLM.from_pretrained("BAAI/Emu3-Chat-hf", torch_dtype=torch.bfloat16) >>> processor = Emu3Processor.from_pretrained("BAAI/Emu3-Chat-hf") >>> inputs = processor(text=["Can you write me a poem about winter."], return_tensors="pt").to(model.device) >>> generated_ids = model.generate(**inputs, max_new_tokens=100, do_sample=False) >>> processor.batch_decode(generated_ids, skip_special_tokens=True)[0] ```""" super().forward() class Emu3ForConditionalGeneration(Emu3PreTrainedModel, GenerationMixin): _tied_weights_keys = ["text_model.lm_head.weight"] _supports_static_cache = False # `get_image_tokens()`, called when `pixel_values` is passed, is not compileable def __init__(self, config): super().__init__(config) self.text_model = Emu3ForCausalLM._from_config(config.text_config) self.vqmodel = Emu3VQVAE(config.vq_config) self.vocabulary_mapping = Emu3ImageVocabularyMapping(config.vocabulary_map) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.text_model.get_input_embeddings() def set_input_embeddings(self, value): self.text_model.set_input_embeddings(value) def get_image_tokens(self, pixel_values: torch.FloatTensor, image_sizes: torch.LongTensor): """ Tokenizes images into discrete tokens with VQGAN module. Converts obtained image tokens into BPE tokens and wraps with "boi" and "eoi" special tokens. Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`): The tensors corresponding to the input images. image_sizes (`torch.LongTensor` of shape `(batch_size, 2)`): The sizes of the images in the batch, being (height, width) for each image. """ image_tokens_list = self.vqmodel.encode(pixel_values, image_sizes) bpe_tokens_list = [self.vocabulary_mapping.convert_img2bpe(tokens).flatten() for tokens in image_tokens_list] bpe_tokens = torch.cat(bpe_tokens_list) return bpe_tokens @torch.no_grad def decode_image_tokens(self, image_tokens: torch.LongTensor, height: int, width: int): """ Decodes generated image tokens from language model to continuous pixel values with VQGAN module via upsampling. Args: image_tokens (`torch.LongTensor` of shape `(batch_size, num_of_tokens)`): The tensors corresponding to the input images. height (`int`): Height of the generated image before upsampling. width (`int`): Width of the generated image before upsampling. """ sequences = image_tokens[:, :-3].view(-1, height, width + 1) image_tokens = self.vocabulary_mapping.convert_bpe2img(sequences) image = self.vqmodel.decode(image_tokens) return image @can_return_tuple @add_start_docstrings_to_model_forward(EMU3_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, image_sizes: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, labels: Optional[torch.LongTensor] = None, logits_to_keep: Union[int, torch.Tensor] = 0, ) -> CausalLMOutputWithPast: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. logits_to_keep (`int` or `torch.Tensor`, *optional*): If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that token can save memory, which becomes pretty significant for long sequences or large vocabulary size. If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension. This is useful when using packed tensor format (single dimension for batch and sequence length). Returns: Example: ```python >>> from transformers import Emu3Processor, Emu3ForConditionalGeneration >>> import torch >>> import requests >>> from PIL import Image >>> model = Emu3ForConditionalGeneration.from_pretrained("BAAI/Emu3-Chat-hf", torch_dtype=torch.bfloat16) >>> processor = Emu3Processor.from_pretrained("BAAI/Emu3-Chat-hf") >>> conversation = [ ... { ... "role": "system", ... "content": [ ... {"type": "text", "text": "You are a helpful assistant."}, ... ], ... }, ... { ... "role": "user", ... "content": [ ... {"type": "image"}, ... {"type": "text", "text": "Please describe the image."}, ... ], ... }, ... ] >>> prompt = processor.apply_chat_template(conversation, add_generation_prompt=True) >>> image = Image.open(requests.get("https://www.ilankelman.org/stopsigns/australia.jpg", stream=True).raw) >>> inputs = processor(images=[image], text=[prompt], return_tensors="pt").to(model.device, torch.bfloat16) >>> generated_ids = model.generate(**inputs, max_new_tokens=100, do_sample=False) >>> processor.batch_decode(generated_ids, skip_special_tokens=True)[0] ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError( "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one" ) if pixel_values is not None and inputs_embeds is not None: raise ValueError( "You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one" ) if pixel_values is not None: image_tokens = self.get_image_tokens(pixel_values, image_sizes) special_image_mask = input_ids == self.vocabulary_mapping.image_token_id image_tokens = image_tokens.to(input_ids.device, input_ids.dtype) input_ids = input_ids.masked_scatter(special_image_mask, image_tokens) # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) return self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, cache_position=cache_position, logits_to_keep=logits_to_keep, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, position_ids=None, use_cache=True, pixel_values=None, **kwargs, ): # Overwritten -- in specific circumstances we don't want to forward image inputs to the model model_inputs = super().prepare_inputs_for_generation( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, inputs_embeds=inputs_embeds, cache_position=cache_position, position_ids=position_ids, pixel_values=pixel_values, use_cache=use_cache, **kwargs, ) if cache_position[0] != 0: model_inputs["pixel_values"] = None return model_inputs __all__ = [ "Emu3ForConditionalGeneration", "Emu3ForCausalLM", "Emu3TextModel", "Emu3PreTrainedModel", "Emu3VQVAE", ]
Memory