# Copyright 2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import json import os import platform import string import time from argparse import ArgumentParser, Namespace from dataclasses import dataclass, field from threading import Thread from typing import Optional import yaml from transformers.utils import is_rich_available, is_torch_available from . import BaseTransformersCLICommand if platform.system() != "Windows": import pwd if is_rich_available(): from rich.console import Console from rich.live import Live from rich.markdown import Markdown if is_torch_available(): import torch from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer ALLOWED_KEY_CHARS = set(string.ascii_letters + string.whitespace) ALLOWED_VALUE_CHARS = set( string.ascii_letters + string.digits + string.whitespace + r".!\"#$%&'()*+,\-/:<=>?@[]^_`{|}~" ) HELP_STRING = """\ **TRANSFORMERS CHAT INTERFACE** The chat interface is a simple tool to try out a chat model. Besides talking to the model there are several commands: - **help**: show this help message - **clear**: clears the current conversation and start a new one - **example {NAME}**: load example named `{NAME}` from the config and use it as the user input - **set {SETTING_NAME}={SETTING_VALUE};**: change the system prompt or generation settings (multiple settings are separated by a ';'). - **reset**: same as clear but also resets the generation configs to defaults if they have been changed by **set** - **save {SAVE_NAME} (optional)**: save the current chat and settings to file by default to `./chat_history/{MODEL_NAME}/chat_{DATETIME}.yaml` or `{SAVE_NAME}` if provided - **exit**: closes the interface """ SUPPORTED_GENERATION_KWARGS = [ "max_new_tokens", "do_sample", "num_beams", "temperature", "top_p", "top_k", "repetition_penalty", ] DEFAULT_EXAMPLES = { "llama": {"text": "There is a Llama in my lawn, how can I get rid of it?"}, "code": { "text": "Write a Python function that integrates any Python function f(x) numerically over an arbitrary interval [x_start, x_end]." }, "helicopter": {"text": "How many helicopters can a human eat in one sitting?"}, "numbers": {"text": "Count to 10 but skip every number ending with an 'e'"}, "birds": {"text": "Why aren't birds real?"}, "socks": {"text": "Why is it important to eat socks after meditating?"}, } def get_username(): if platform.system() == "Windows": return os.getlogin() else: return pwd.getpwuid(os.getuid()).pw_name def create_default_filename(model_name): time_str = time.strftime("%Y-%m-%d_%H-%M-%S") return f"{model_name}/chat_{time_str}.json" def save_chat(chat, args, filename): output_dict = {} output_dict["settings"] = vars(args) output_dict["chat_history"] = chat folder = args.save_folder if filename is None: filename = create_default_filename(args.model_name_or_path) filename = os.path.join(folder, filename) os.makedirs(os.path.dirname(filename), exist_ok=True) with open(filename, "w") as f: json.dump(output_dict, f, indent=4) return os.path.abspath(filename) def clear_chat_history(system_prompt): if system_prompt is None: chat = [] else: chat = [{"role": "system", "content": system_prompt}] return chat def parse_settings(user_input, current_args, interface): settings = user_input[4:].strip().split(";") settings = [(setting.split("=")[0], setting[len(setting.split("=")[0]) + 1 :]) for setting in settings] settings = dict(settings) error = False for name in settings: if hasattr(current_args, name): try: if isinstance(getattr(current_args, name), bool): if settings[name] == "True": settings[name] = True elif settings[name] == "False": settings[name] = False else: raise ValueError else: settings[name] = type(getattr(current_args, name))(settings[name]) except ValueError: interface.print_red( f"Cannot cast setting {name} (={settings[name]}) to {type(getattr(current_args, name))}." ) else: interface.print_red(f"There is no '{name}' setting.") if error: interface.print_red("There was an issue parsing the settings. No settings have been changed.") return current_args, False else: for name in settings: setattr(current_args, name, settings[name]) interface.print_green(f"Set {name} to {settings[name]}.") time.sleep(1.5) # so the user has time to read the changes return current_args, True def get_quantization_config(model_args) -> Optional["BitsAndBytesConfig"]: if model_args.load_in_4bit: quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=model_args.torch_dtype, # For consistency with model weights, we use the same value as `torch_dtype` bnb_4bit_quant_type=model_args.bnb_4bit_quant_type, bnb_4bit_use_double_quant=model_args.use_bnb_nested_quant, bnb_4bit_quant_storage=model_args.torch_dtype, ) elif model_args.load_in_8bit: quantization_config = BitsAndBytesConfig( load_in_8bit=True, ) else: quantization_config = None return quantization_config def load_model_and_tokenizer(args): tokenizer = AutoTokenizer.from_pretrained( args.model_name_or_path, revision=args.model_revision, trust_remote_code=args.trust_remote_code, ) torch_dtype = args.torch_dtype if args.torch_dtype in ["auto", None] else getattr(torch, args.torch_dtype) quantization_config = get_quantization_config(args) model_kwargs = { "revision": args.model_revision, "attn_implementation": args.attn_implementation, "torch_dtype": torch_dtype, "device_map": "auto", "quantization_config": quantization_config, } model = AutoModelForCausalLM.from_pretrained( args.model_name_or_path, trust_remote_code=args.trust_remote_code, **model_kwargs ) if getattr(model, "hf_device_map", None) is None: model = model.to(args.device) return model, tokenizer def parse_eos_tokens(tokenizer, eos_tokens, eos_token_ids): if tokenizer.pad_token_id is None: pad_token_id = tokenizer.eos_token_id else: pad_token_id = tokenizer.pad_token_id all_eos_token_ids = [] if eos_tokens is not None: all_eos_token_ids.extend(tokenizer.convert_tokens_to_ids(eos_tokens.split(","))) if eos_token_ids is not None: all_eos_token_ids.extend([int(token_id) for token_id in eos_token_ids.split(",")]) if len(all_eos_token_ids) == 0: all_eos_token_ids.append(tokenizer.eos_token_id) return pad_token_id, all_eos_token_ids class RichInterface: def __init__(self, model_name=None, user_name=None): self._console = Console() if model_name is None: self.model_name = "assistant" else: self.model_name = model_name if user_name is None: self.user_name = "user" else: self.user_name = user_name def stream_output(self, output_stream): """Stream output from a role.""" # This method is originally from the FastChat CLI: https://github.com/lm-sys/FastChat/blob/main/fastchat/serve/cli.py # Create a Live context for updating the console output text = "" self._console.print(f"[bold blue]<{self.model_name}>:") with Live(console=self._console, refresh_per_second=4) as live: # Read lines from the stream for i, outputs in enumerate(output_stream): if not outputs or i == 0: continue text += outputs # Render the accumulated text as Markdown # NOTE: this is a workaround for the rendering "unstandard markdown" # in rich. The chatbots output treat "\n" as a new line for # better compatibility with real-world text. However, rendering # in markdown would break the format. It is because standard markdown # treat a single "\n" in normal text as a space. # Our workaround is adding two spaces at the end of each line. # This is not a perfect solution, as it would # introduce trailing spaces (only) in code block, but it works well # especially for console output, because in general the console does not # care about trailing spaces. lines = [] for line in text.splitlines(): lines.append(line) if line.startswith("```"): # Code block marker - do not add trailing spaces, as it would # break the syntax highlighting lines.append("\n") else: lines.append(" \n") markdown = Markdown("".join(lines).strip(), code_theme="github-dark") # Update the Live console output live.update(markdown) self._console.print() return text def input(self): input = self._console.input(f"[bold red]<{self.user_name}>:\n") self._console.print() return input def clear(self): self._console.clear() def print_user_message(self, text): self._console.print(f"[bold red]<{self.user_name}>:[/ bold red]\n{text}") self._console.print() def print_green(self, text): self._console.print(f"[bold green]{text}") self._console.print() def print_red(self, text): self._console.print(f"[bold red]{text}") self._console.print() def print_help(self): self._console.print(Markdown(HELP_STRING)) self._console.print() @dataclass class ChatArguments: r""" Arguments for the chat script. Args: model_name_or_path (`str`): Name of the pre-trained model. user (`str` or `None`, *optional*, defaults to `None`): Username to display in chat interface. system_prompt (`str` or `None`, *optional*, defaults to `None`): System prompt. save_folder (`str`, *optional*, defaults to `"./chat_history/"`): Folder to save chat history. device (`str`, *optional*, defaults to `"cpu"`): Device to use for inference. examples_path (`str` or `None`, *optional*, defaults to `None`): Path to a yaml file with examples. max_new_tokens (`int`, *optional*, defaults to `256`): Maximum number of tokens to generate. do_sample (`bool`, *optional*, defaults to `True`): Whether to sample outputs during generation. num_beams (`int`, *optional*, defaults to `1`): Number of beams for beam search. temperature (`float`, *optional*, defaults to `1.0`): Temperature parameter for generation. top_k (`int`, *optional*, defaults to `50`): Value of k for top-k sampling. top_p (`float`, *optional*, defaults to `1.0`): Value of p for nucleus sampling. repetition_penalty (`float`, *optional*, defaults to `1.0`): Repetition penalty. eos_tokens (`str` or `None`, *optional*, defaults to `None`): EOS tokens to stop the generation. If multiple they should be comma separated. eos_token_ids (`str` or `None`, *optional*, defaults to `None`): EOS token IDs to stop the generation. If multiple they should be comma separated. model_revision (`str`, *optional*, defaults to `"main"`): Specific model version to use (can be a branch name, tag name or commit id). torch_dtype (`str` or `None`, *optional*, defaults to `None`): Override the default `torch.dtype` and load the model under this dtype. If `'auto'` is passed, the dtype will be automatically derived from the model's weights. trust_remote_code (`bool`, *optional*, defaults to `False`): Whether to trust remote code when loading a model. attn_implementation (`str` or `None`, *optional*, defaults to `None`): Which attention implementation to use; you can run --attn_implementation=flash_attention_2, in which case you must install this manually by running `pip install flash-attn --no-build-isolation`. load_in_8bit (`bool`, *optional*, defaults to `False`): Whether to use 8 bit precision for the base model - works only with LoRA. load_in_4bit (`bool`, *optional*, defaults to `False`): Whether to use 4 bit precision for the base model - works only with LoRA. bnb_4bit_quant_type (`str`, *optional*, defaults to `"nf4"`): Quantization type. use_bnb_nested_quant (`bool`, *optional*, defaults to `False`): Whether to use nested quantization. """ # General settings model_name_or_path: str = field(metadata={"help": "Name of the pre-trained model."}) user: Optional[str] = field(default=None, metadata={"help": "Username to display in chat interface."}) system_prompt: Optional[str] = field(default=None, metadata={"help": "System prompt."}) save_folder: str = field(default="./chat_history/", metadata={"help": "Folder to save chat history."}) device: str = field(default="cpu", metadata={"help": "Device to use for inference."}) examples_path: Optional[str] = field(default=None, metadata={"help": "Path to a yaml file with examples."}) # Generation settings max_new_tokens: int = field(default=256, metadata={"help": "Maximum number of tokens to generate."}) do_sample: bool = field(default=True, metadata={"help": "Whether to sample outputs during generation."}) num_beams: int = field(default=1, metadata={"help": "Number of beams for beam search."}) temperature: float = field(default=1.0, metadata={"help": "Temperature parameter for generation."}) top_k: int = field(default=50, metadata={"help": "Value of k for top-k sampling."}) top_p: float = field(default=1.0, metadata={"help": "Value of p for nucleus sampling."}) repetition_penalty: float = field(default=1.0, metadata={"help": "Repetition penalty."}) eos_tokens: Optional[str] = field( default=None, metadata={"help": "EOS tokens to stop the generation. If multiple they should be comma separated."}, ) eos_token_ids: Optional[str] = field( default=None, metadata={"help": "EOS token IDs to stop the generation. If multiple they should be comma separated."}, ) # Model loading model_revision: str = field( default="main", metadata={"help": "Specific model version to use (can be a branch name, tag name or commit id)."}, ) torch_dtype: Optional[str] = field( default="auto", metadata={ "help": "Override the default `torch.dtype` and load the model under this dtype. If `'auto'` is passed, " "the dtype will be automatically derived from the model's weights.", "choices": ["auto", "bfloat16", "float16", "float32"], }, ) trust_remote_code: bool = field( default=False, metadata={"help": "Whether to trust remote code when loading a model."} ) attn_implementation: Optional[str] = field( default=None, metadata={ "help": "Which attention implementation to use; you can run --attn_implementation=flash_attention_2, in " "which case you must install this manually by running `pip install flash-attn --no-build-isolation`." }, ) load_in_8bit: bool = field( default=False, metadata={"help": "Whether to use 8 bit precision for the base model - works only with LoRA."}, ) load_in_4bit: bool = field( default=False, metadata={"help": "Whether to use 4 bit precision for the base model - works only with LoRA."}, ) bnb_4bit_quant_type: str = field(default="nf4", metadata={"help": "Quantization type.", "choices": ["fp4", "nf4"]}) use_bnb_nested_quant: bool = field(default=False, metadata={"help": "Whether to use nested quantization."}) def chat_command_factory(args: Namespace): """ Factory function used to chat with a local model. """ return ChatCommand(args) class ChatCommand(BaseTransformersCLICommand): @staticmethod def register_subcommand(parser: ArgumentParser): """ Register this command to argparse so it's available for the transformer-cli Args: parser: Root parser to register command-specific arguments """ dataclass_types = (ChatArguments,) chat_parser = parser.add_parser("chat", help=HELP_STRING, dataclass_types=dataclass_types) chat_parser.set_defaults(func=chat_command_factory) def __init__(self, args): self.args = args @staticmethod def is_valid_setting_command(s: str) -> bool: # First check the basic structure if not s.startswith("set ") or "=" not in s: return False # Split into individual assignments assignments = [a.strip() for a in s[4:].split(";") if a.strip()] for assignment in assignments: # Each assignment should have exactly one '=' if assignment.count("=") != 1: return False key, value = assignment.split("=", 1) key = key.strip() value = value.strip() if not key or not value: return False # Keys can only have alphabetic characters, spaces and underscores if not set(key).issubset(ALLOWED_KEY_CHARS): return False # Values can have just about anything that isn't a semicolon if not set(value).issubset(ALLOWED_VALUE_CHARS): return False return True def run(self): if not is_rich_available(): raise ImportError("You need to install rich to use the chat interface. (`pip install rich`)") if not is_torch_available(): raise ImportError("You need to install torch to use the chat interface. (`pip install torch`)") args = self.args if args.examples_path is None: examples = DEFAULT_EXAMPLES else: with open(args.examples_path) as f: examples = yaml.safe_load(f) current_args = copy.deepcopy(args) if args.user is None: user = get_username() else: user = args.user model, tokenizer = load_model_and_tokenizer(args) generation_streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True, skip_prompt=True) pad_token_id, eos_token_ids = parse_eos_tokens(tokenizer, args.eos_tokens, args.eos_token_ids) interface = RichInterface(model_name=args.model_name_or_path, user_name=user) interface.clear() chat = clear_chat_history(current_args.system_prompt) while True: try: user_input = interface.input() if user_input == "clear": chat = clear_chat_history(current_args.system_prompt) interface.clear() continue if user_input == "help": interface.print_help() continue if user_input == "exit": break if user_input == "reset": interface.clear() current_args = copy.deepcopy(args) chat = clear_chat_history(current_args.system_prompt) continue if user_input.startswith("save") and len(user_input.split()) < 2: split_input = user_input.split() if len(split_input) == 2: filename = split_input[1] else: filename = None filename = save_chat(chat, current_args, filename) interface.print_green(f"Chat saved in {filename}!") continue if self.is_valid_setting_command(user_input): current_args, success = parse_settings(user_input, current_args, interface) if success: chat = [] interface.clear() continue if user_input.startswith("example") and len(user_input.split()) == 2: example_name = user_input.split()[1] if example_name in examples: interface.clear() chat = [] interface.print_user_message(examples[example_name]["text"]) user_input = examples[example_name]["text"] else: interface.print_red( f"Example {example_name} not found in list of available examples: {list(examples.keys())}." ) continue chat.append({"role": "user", "content": user_input}) inputs = tokenizer.apply_chat_template(chat, return_tensors="pt", add_generation_prompt=True).to( model.device ) attention_mask = torch.ones_like(inputs) generation_kwargs = { "inputs": inputs, "attention_mask": attention_mask, "streamer": generation_streamer, "max_new_tokens": current_args.max_new_tokens, "do_sample": current_args.do_sample, "num_beams": current_args.num_beams, "temperature": current_args.temperature, "top_k": current_args.top_k, "top_p": current_args.top_p, "repetition_penalty": current_args.repetition_penalty, "pad_token_id": pad_token_id, "eos_token_id": eos_token_ids, } thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() model_output = interface.stream_output(generation_streamer) thread.join() chat.append({"role": "assistant", "content": model_output}) except KeyboardInterrupt: break
Memory