//===--- ArrayRef.h - Array Reference Wrapper -------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // ATen: modified from llvm::ArrayRef. // removed llvm-specific functionality // removed some implicit const -> non-const conversions that rely on // complicated std::enable_if meta-programming // removed a bunch of slice variants for simplicity... #pragma once #include <c10/macros/Macros.h> #include <c10/util/Deprecated.h> #include <c10/util/Exception.h> #include <c10/util/SmallVector.h> #include <array> #include <cstddef> #include <cstdint> #include <initializer_list> #include <iterator> #include <ostream> #include <type_traits> #include <vector> namespace c10 { /// ArrayRef - Represent a constant reference to an array (0 or more elements /// consecutively in memory), i.e. a start pointer and a length. It allows /// various APIs to take consecutive elements easily and conveniently. /// /// This class does not own the underlying data, it is expected to be used in /// situations where the data resides in some other buffer, whose lifetime /// extends past that of the ArrayRef. For this reason, it is not in general /// safe to store an ArrayRef. /// /// This is intended to be trivially copyable, so it should be passed by /// value. template <typename T> class ArrayRef final { public: using iterator = const T*; using const_iterator = const T*; using size_type = size_t; using value_type = T; using reverse_iterator = std::reverse_iterator<iterator>; private: /// The start of the array, in an external buffer. const T* Data; /// The number of elements. size_type Length; void debugCheckNullptrInvariant() { TORCH_INTERNAL_ASSERT_DEBUG_ONLY( Data != nullptr || Length == 0, "created ArrayRef with nullptr and non-zero length! std::optional relies on this being illegal"); } public: /// @name Constructors /// @{ /// Construct an empty ArrayRef. /* implicit */ constexpr ArrayRef() : Data(nullptr), Length(0) {} /// Construct an ArrayRef from a single element. // TODO Make this explicit constexpr ArrayRef(const T& OneElt) : Data(&OneElt), Length(1) {} /// Construct an ArrayRef from a pointer and length. C10_HOST_CONSTEXPR_EXCEPT_WIN_CUDA ArrayRef(const T* data, size_t length) : Data(data), Length(length) { debugCheckNullptrInvariant(); } /// Construct an ArrayRef from a range. C10_HOST_CONSTEXPR_EXCEPT_WIN_CUDA ArrayRef(const T* begin, const T* end) : Data(begin), Length(end - begin) { debugCheckNullptrInvariant(); } /// Construct an ArrayRef from a SmallVector. This is templated in order to /// avoid instantiating SmallVectorTemplateCommon<T> whenever we /// copy-construct an ArrayRef. template <typename U> /* implicit */ ArrayRef(const SmallVectorTemplateCommon<T, U>& Vec) : Data(Vec.data()), Length(Vec.size()) { debugCheckNullptrInvariant(); } template < typename Container, typename = std::enable_if_t<std::is_same_v< std::remove_const_t<decltype(std::declval<Container>().data())>, T*>>> /* implicit */ ArrayRef(const Container& container) : Data(container.data()), Length(container.size()) { debugCheckNullptrInvariant(); } /// Construct an ArrayRef from a std::vector. // The enable_if stuff here makes sure that this isn't used for // std::vector<bool>, because ArrayRef can't work on a std::vector<bool> // bitfield. template <typename A> /* implicit */ ArrayRef(const std::vector<T, A>& Vec) : Data(Vec.data()), Length(Vec.size()) { static_assert( !std::is_same<T, bool>::value, "ArrayRef<bool> cannot be constructed from a std::vector<bool> bitfield."); } /// Construct an ArrayRef from a std::array template <size_t N> /* implicit */ constexpr ArrayRef(const std::array<T, N>& Arr) : Data(Arr.data()), Length(N) {} /// Construct an ArrayRef from a C array. template <size_t N> // NOLINTNEXTLINE(*c-arrays*) /* implicit */ constexpr ArrayRef(const T (&Arr)[N]) : Data(Arr), Length(N) {} /// Construct an ArrayRef from a std::initializer_list. /* implicit */ constexpr ArrayRef(const std::initializer_list<T>& Vec) : Data( std::begin(Vec) == std::end(Vec) ? static_cast<T*>(nullptr) : std::begin(Vec)), Length(Vec.size()) {} /// @} /// @name Simple Operations /// @{ constexpr iterator begin() const { return Data; } constexpr iterator end() const { return Data + Length; } // These are actually the same as iterator, since ArrayRef only // gives you const iterators. constexpr const_iterator cbegin() const { return Data; } constexpr const_iterator cend() const { return Data + Length; } constexpr reverse_iterator rbegin() const { return reverse_iterator(end()); } constexpr reverse_iterator rend() const { return reverse_iterator(begin()); } /// empty - Check if the array is empty. constexpr bool empty() const { return Length == 0; } constexpr const T* data() const { return Data; } /// size - Get the array size. constexpr size_t size() const { return Length; } /// front - Get the first element. C10_HOST_CONSTEXPR_EXCEPT_WIN_CUDA const T& front() const { TORCH_CHECK( !empty(), "ArrayRef: attempted to access front() of empty list"); return Data[0]; } /// back - Get the last element. C10_HOST_CONSTEXPR_EXCEPT_WIN_CUDA const T& back() const { TORCH_CHECK(!empty(), "ArrayRef: attempted to access back() of empty list"); return Data[Length - 1]; } /// equals - Check for element-wise equality. constexpr bool equals(ArrayRef RHS) const { return Length == RHS.Length && std::equal(begin(), end(), RHS.begin()); } /// slice(n, m) - Take M elements of the array starting at element N C10_HOST_CONSTEXPR_EXCEPT_WIN_CUDA ArrayRef<T> slice(size_t N, size_t M) const { TORCH_CHECK( N + M <= size(), "ArrayRef: invalid slice, N = ", N, "; M = ", M, "; size = ", size()); return ArrayRef<T>(data() + N, M); } /// slice(n) - Chop off the first N elements of the array. C10_HOST_CONSTEXPR_EXCEPT_WIN_CUDA ArrayRef<T> slice(size_t N) const { TORCH_CHECK( N <= size(), "ArrayRef: invalid slice, N = ", N, "; size = ", size()); return slice(N, size() - N); } /// @} /// @name Operator Overloads /// @{ constexpr const T& operator[](size_t Index) const { return Data[Index]; } /// Vector compatibility C10_HOST_CONSTEXPR_EXCEPT_WIN_CUDA const T& at(size_t Index) const { TORCH_CHECK( Index < Length, "ArrayRef: invalid index Index = ", Index, "; Length = ", Length); return Data[Index]; } /// Disallow accidental assignment from a temporary. /// /// The declaration here is extra complicated so that "arrayRef = {}" /// continues to select the move assignment operator. template <typename U> std::enable_if_t<std::is_same_v<U, T>, ArrayRef<T>>& operator=( // NOLINTNEXTLINE(cppcoreguidelines-missing-std-forward) U&& Temporary) = delete; /// Disallow accidental assignment from a temporary. /// /// The declaration here is extra complicated so that "arrayRef = {}" /// continues to select the move assignment operator. template <typename U> std::enable_if_t<std::is_same_v<U, T>, ArrayRef<T>>& operator=( std::initializer_list<U>) = delete; /// @} /// @name Expensive Operations /// @{ std::vector<T> vec() const { return std::vector<T>(Data, Data + Length); } /// @} }; template <typename T> std::ostream& operator<<(std::ostream& out, ArrayRef<T> list) { int i = 0; out << "["; for (const auto& e : list) { if (i++ > 0) out << ", "; out << e; } out << "]"; return out; } /// @name ArrayRef Convenience constructors /// @{ /// Construct an ArrayRef from a single element. template <typename T> ArrayRef<T> makeArrayRef(const T& OneElt) { return OneElt; } /// Construct an ArrayRef from a pointer and length. template <typename T> ArrayRef<T> makeArrayRef(const T* data, size_t length) { return ArrayRef<T>(data, length); } /// Construct an ArrayRef from a range. template <typename T> ArrayRef<T> makeArrayRef(const T* begin, const T* end) { return ArrayRef<T>(begin, end); } /// Construct an ArrayRef from a SmallVector. template <typename T> ArrayRef<T> makeArrayRef(const SmallVectorImpl<T>& Vec) { return Vec; } /// Construct an ArrayRef from a SmallVector. template <typename T, unsigned N> ArrayRef<T> makeArrayRef(const SmallVector<T, N>& Vec) { return Vec; } /// Construct an ArrayRef from a std::vector. template <typename T> ArrayRef<T> makeArrayRef(const std::vector<T>& Vec) { return Vec; } /// Construct an ArrayRef from a std::array. template <typename T, std::size_t N> ArrayRef<T> makeArrayRef(const std::array<T, N>& Arr) { return Arr; } /// Construct an ArrayRef from an ArrayRef (no-op) (const) template <typename T> ArrayRef<T> makeArrayRef(const ArrayRef<T>& Vec) { return Vec; } /// Construct an ArrayRef from an ArrayRef (no-op) template <typename T> ArrayRef<T>& makeArrayRef(ArrayRef<T>& Vec) { return Vec; } /// Construct an ArrayRef from a C array. template <typename T, size_t N> // NOLINTNEXTLINE(*c-arrays*) ArrayRef<T> makeArrayRef(const T (&Arr)[N]) { return ArrayRef<T>(Arr); } // WARNING: Template instantiation will NOT be willing to do an implicit // conversions to get you to an c10::ArrayRef, which is why we need so // many overloads. template <typename T> bool operator==(c10::ArrayRef<T> a1, c10::ArrayRef<T> a2) { return a1.equals(a2); } template <typename T> bool operator!=(c10::ArrayRef<T> a1, c10::ArrayRef<T> a2) { return !a1.equals(a2); } template <typename T> bool operator==(const std::vector<T>& a1, c10::ArrayRef<T> a2) { return c10::ArrayRef<T>(a1).equals(a2); } template <typename T> bool operator!=(const std::vector<T>& a1, c10::ArrayRef<T> a2) { return !c10::ArrayRef<T>(a1).equals(a2); } template <typename T> bool operator==(c10::ArrayRef<T> a1, const std::vector<T>& a2) { return a1.equals(c10::ArrayRef<T>(a2)); } template <typename T> bool operator!=(c10::ArrayRef<T> a1, const std::vector<T>& a2) { return !a1.equals(c10::ArrayRef<T>(a2)); } using IntArrayRef = ArrayRef<int64_t>; // This alias is deprecated because it doesn't make ownership // semantics obvious. Use IntArrayRef instead! C10_DEFINE_DEPRECATED_USING(IntList, ArrayRef<int64_t>) } // namespace c10
Memory