�
��gGb � �� � d dl mZ d dlmZmZmZ d dlmZ ddlm Z m
Z
mZ ddlm
Z
ddlmZmZ d� Zd � Zd
� Zd� Zd� Zd
� Zd� Zefd�Zd� Zdd�Zdd�Zdd�Zdd�Zdd�ZdS ) � )�
expand_mul)�Dummy�uniquely_named_symbol�symbols)�numbered_symbols� )�
ShapeError�NonSquareMatrixError�NonInvertibleMatrixError)�_fuzzy_positive_definite)�_get_intermediate_simp�_iszeroc �� � �� � � � � st d� � ��j � j k rt d� � �� � �j �j � �fd�� � S )a Solves ``Ax = B`` efficiently, where A is a diagonal Matrix,
with non-zero diagonal entries.
Examples
========
>>> from sympy import Matrix, eye
>>> A = eye(2)*2
>>> B = Matrix([[1, 2], [3, 4]])
>>> A.diagonal_solve(B) == B/2
True
See Also
========
sympy.matrices.dense.DenseMatrix.lower_triangular_solve
sympy.matrices.dense.DenseMatrix.upper_triangular_solve
gauss_jordan_solve
cholesky_solve
LDLsolve
LUsolve
QRsolve
pinv_solve
cramer_solve
zMatrix should be diagonalz
Size mismatchc �. �� �| |f �| | f z S �N� )�i�j�M�rhss ���f/home/asafur/pinokio/api/open-webui.git/app/env/lib/python3.11/site-packages/sympy/matrices/solvers.py�<lambda>z!_diagonal_solve.<locals>.<lambda>+ s �� ��Q��T��Q�q�!�t�W�)<� � )�is_diagonal� TypeError�rows�_new�cols)r r s ``r �_diagonal_solver
sp ��� �6
�=�=�?�?� 5��3�4�4�4�
�x�1�6�����(�(�(��6�6���#�(�<�<�<�<�<�>� >� >r c �f � ���� ddl m} � j st d� � �|j � j k rt d� � �� j st d� � �t � � }|� � j |j
� � �t |j
� � D ]��t � j � � D ]n�� ��f dk rt d� � � ||��f t � ���fd�t �� � D � � � � z
� ��f z � � ���f<