import math import re import numpy as np import pytest from scipy import stats from sklearn import datasets, svm from sklearn.datasets import make_multilabel_classification from sklearn.exceptions import UndefinedMetricWarning from sklearn.linear_model import LogisticRegression from sklearn.metrics import ( accuracy_score, auc, average_precision_score, coverage_error, dcg_score, det_curve, label_ranking_average_precision_score, label_ranking_loss, ndcg_score, precision_recall_curve, roc_auc_score, roc_curve, top_k_accuracy_score, ) from sklearn.metrics._ranking import _dcg_sample_scores, _ndcg_sample_scores from sklearn.model_selection import train_test_split from sklearn.preprocessing import label_binarize from sklearn.random_projection import _sparse_random_matrix from sklearn.utils._testing import ( _convert_container, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_equal, ) from sklearn.utils.extmath import softmax from sklearn.utils.fixes import CSR_CONTAINERS from sklearn.utils.validation import ( check_array, check_consistent_length, check_random_state, ) ############################################################################### # Utilities for testing CURVE_FUNCS = [ det_curve, precision_recall_curve, roc_curve, ] def make_prediction(dataset=None, binary=False): """Make some classification predictions on a toy dataset using a SVC If binary is True restrict to a binary classification problem instead of a multiclass classification problem """ if dataset is None: # import some data to play with dataset = datasets.load_iris() X = dataset.data y = dataset.target if binary: # restrict to a binary classification task X, y = X[y < 2], y[y < 2] n_samples, n_features = X.shape p = np.arange(n_samples) rng = check_random_state(37) rng.shuffle(p) X, y = X[p], y[p] half = int(n_samples / 2) # add noisy features to make the problem harder and avoid perfect results rng = np.random.RandomState(0) X = np.c_[X, rng.randn(n_samples, 200 * n_features)] # run classifier, get class probabilities and label predictions clf = svm.SVC(kernel="linear", probability=True, random_state=0) y_score = clf.fit(X[:half], y[:half]).predict_proba(X[half:]) if binary: # only interested in probabilities of the positive case # XXX: do we really want a special API for the binary case? y_score = y_score[:, 1] y_pred = clf.predict(X[half:]) y_true = y[half:] return y_true, y_pred, y_score ############################################################################### # Tests def _auc(y_true, y_score): """Alternative implementation to check for correctness of `roc_auc_score`.""" pos_label = np.unique(y_true)[1] # Count the number of times positive samples are correctly ranked above # negative samples. pos = y_score[y_true == pos_label] neg = y_score[y_true != pos_label] diff_matrix = pos.reshape(1, -1) - neg.reshape(-1, 1) n_correct = np.sum(diff_matrix > 0) return n_correct / float(len(pos) * len(neg)) def _average_precision(y_true, y_score): """Alternative implementation to check for correctness of `average_precision_score`. Note that this implementation fails on some edge cases. For example, for constant predictions e.g. [0.5, 0.5, 0.5], y_true = [1, 0, 0] returns an average precision of 0.33... but y_true = [0, 0, 1] returns 1.0. """ pos_label = np.unique(y_true)[1] n_pos = np.sum(y_true == pos_label) order = np.argsort(y_score)[::-1] y_score = y_score[order] y_true = y_true[order] score = 0 for i in range(len(y_score)): if y_true[i] == pos_label: # Compute precision up to document i # i.e, percentage of relevant documents up to document i. prec = 0 for j in range(0, i + 1): if y_true[j] == pos_label: prec += 1.0 prec /= i + 1.0 score += prec return score / n_pos def _average_precision_slow(y_true, y_score): """A second alternative implementation of average precision that closely follows the Wikipedia article's definition (see References). This should give identical results as `average_precision_score` for all inputs. References ---------- .. [1] `Wikipedia entry for the Average precision <https://en.wikipedia.org/wiki/Average_precision>`_ """ precision, recall, threshold = precision_recall_curve(y_true, y_score) precision = list(reversed(precision)) recall = list(reversed(recall)) average_precision = 0 for i in range(1, len(precision)): average_precision += precision[i] * (recall[i] - recall[i - 1]) return average_precision def _partial_roc_auc_score(y_true, y_predict, max_fpr): """Alternative implementation to check for correctness of `roc_auc_score` with `max_fpr` set. """ def _partial_roc(y_true, y_predict, max_fpr): fpr, tpr, _ = roc_curve(y_true, y_predict) new_fpr = fpr[fpr <= max_fpr] new_fpr = np.append(new_fpr, max_fpr) new_tpr = tpr[fpr <= max_fpr] idx_out = np.argmax(fpr > max_fpr) idx_in = idx_out - 1 x_interp = [fpr[idx_in], fpr[idx_out]] y_interp = [tpr[idx_in], tpr[idx_out]] new_tpr = np.append(new_tpr, np.interp(max_fpr, x_interp, y_interp)) return (new_fpr, new_tpr) new_fpr, new_tpr = _partial_roc(y_true, y_predict, max_fpr) partial_auc = auc(new_fpr, new_tpr) # Formula (5) from McClish 1989 fpr1 = 0 fpr2 = max_fpr min_area = 0.5 * (fpr2 - fpr1) * (fpr2 + fpr1) max_area = fpr2 - fpr1 return 0.5 * (1 + (partial_auc - min_area) / (max_area - min_area)) @pytest.mark.parametrize("drop", [True, False]) def test_roc_curve(drop): # Test Area under Receiver Operating Characteristic (ROC) curve y_true, _, y_score = make_prediction(binary=True) expected_auc = _auc(y_true, y_score) fpr, tpr, thresholds = roc_curve(y_true, y_score, drop_intermediate=drop) roc_auc = auc(fpr, tpr) assert_array_almost_equal(roc_auc, expected_auc, decimal=2) assert_almost_equal(roc_auc, roc_auc_score(y_true, y_score)) assert fpr.shape == tpr.shape assert fpr.shape == thresholds.shape def test_roc_curve_end_points(): # Make sure that roc_curve returns a curve start at 0 and ending and # 1 even in corner cases rng = np.random.RandomState(0) y_true = np.array([0] * 50 + [1] * 50) y_pred = rng.randint(3, size=100) fpr, tpr, thr = roc_curve(y_true, y_pred, drop_intermediate=True) assert fpr[0] == 0 assert fpr[-1] == 1 assert fpr.shape == tpr.shape assert fpr.shape == thr.shape def test_roc_returns_consistency(): # Test whether the returned threshold matches up with tpr # make small toy dataset y_true, _, y_score = make_prediction(binary=True) fpr, tpr, thresholds = roc_curve(y_true, y_score) # use the given thresholds to determine the tpr tpr_correct = [] for t in thresholds: tp = np.sum((y_score >= t) & y_true) p = np.sum(y_true) tpr_correct.append(1.0 * tp / p) # compare tpr and tpr_correct to see if the thresholds' order was correct assert_array_almost_equal(tpr, tpr_correct, decimal=2) assert fpr.shape == tpr.shape assert fpr.shape == thresholds.shape def test_roc_curve_multi(): # roc_curve not applicable for multi-class problems y_true, _, y_score = make_prediction(binary=False) with pytest.raises(ValueError): roc_curve(y_true, y_score) def test_roc_curve_confidence(): # roc_curve for confidence scores y_true, _, y_score = make_prediction(binary=True) fpr, tpr, thresholds = roc_curve(y_true, y_score - 0.5) roc_auc = auc(fpr, tpr) assert_array_almost_equal(roc_auc, 0.90, decimal=2) assert fpr.shape == tpr.shape assert fpr.shape == thresholds.shape def test_roc_curve_hard(): # roc_curve for hard decisions y_true, pred, y_score = make_prediction(binary=True) # always predict one trivial_pred = np.ones(y_true.shape) fpr, tpr, thresholds = roc_curve(y_true, trivial_pred) roc_auc = auc(fpr, tpr) assert_array_almost_equal(roc_auc, 0.50, decimal=2) assert fpr.shape == tpr.shape assert fpr.shape == thresholds.shape # always predict zero trivial_pred = np.zeros(y_true.shape) fpr, tpr, thresholds = roc_curve(y_true, trivial_pred) roc_auc = auc(fpr, tpr) assert_array_almost_equal(roc_auc, 0.50, decimal=2) assert fpr.shape == tpr.shape assert fpr.shape == thresholds.shape # hard decisions fpr, tpr, thresholds = roc_curve(y_true, pred) roc_auc = auc(fpr, tpr) assert_array_almost_equal(roc_auc, 0.78, decimal=2) assert fpr.shape == tpr.shape assert fpr.shape == thresholds.shape def test_roc_curve_one_label(): y_true = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] y_pred = [0, 1, 0, 1, 0, 1, 0, 1, 0, 1] # assert there are warnings expected_message = ( "No negative samples in y_true, false positive value should be meaningless" ) with pytest.warns(UndefinedMetricWarning, match=expected_message): fpr, tpr, thresholds = roc_curve(y_true, y_pred) # all true labels, all fpr should be nan assert_array_equal(fpr, np.full(len(thresholds), np.nan)) assert fpr.shape == tpr.shape assert fpr.shape == thresholds.shape # assert there are warnings expected_message = ( "No positive samples in y_true, true positive value should be meaningless" ) with pytest.warns(UndefinedMetricWarning, match=expected_message): fpr, tpr, thresholds = roc_curve([1 - x for x in y_true], y_pred) # all negative labels, all tpr should be nan assert_array_equal(tpr, np.full(len(thresholds), np.nan)) assert fpr.shape == tpr.shape assert fpr.shape == thresholds.shape def test_roc_curve_toydata(): # Binary classification y_true = [0, 1] y_score = [0, 1] tpr, fpr, _ = roc_curve(y_true, y_score) roc_auc = roc_auc_score(y_true, y_score) assert_array_almost_equal(tpr, [0, 0, 1]) assert_array_almost_equal(fpr, [0, 1, 1]) assert_almost_equal(roc_auc, 1.0) y_true = [0, 1] y_score = [1, 0] tpr, fpr, _ = roc_curve(y_true, y_score) roc_auc = roc_auc_score(y_true, y_score) assert_array_almost_equal(tpr, [0, 1, 1]) assert_array_almost_equal(fpr, [0, 0, 1]) assert_almost_equal(roc_auc, 0.0) y_true = [1, 0] y_score = [1, 1] tpr, fpr, _ = roc_curve(y_true, y_score) roc_auc = roc_auc_score(y_true, y_score) assert_array_almost_equal(tpr, [0, 1]) assert_array_almost_equal(fpr, [0, 1]) assert_almost_equal(roc_auc, 0.5) y_true = [1, 0] y_score = [1, 0] tpr, fpr, _ = roc_curve(y_true, y_score) roc_auc = roc_auc_score(y_true, y_score) assert_array_almost_equal(tpr, [0, 0, 1]) assert_array_almost_equal(fpr, [0, 1, 1]) assert_almost_equal(roc_auc, 1.0) y_true = [1, 0] y_score = [0.5, 0.5] tpr, fpr, _ = roc_curve(y_true, y_score) roc_auc = roc_auc_score(y_true, y_score) assert_array_almost_equal(tpr, [0, 1]) assert_array_almost_equal(fpr, [0, 1]) assert_almost_equal(roc_auc, 0.5) # case with no positive samples y_true = [0, 0] y_score = [0.25, 0.75] # assert UndefinedMetricWarning because of no positive sample in y_true expected_message = ( "No positive samples in y_true, true positive value should be meaningless" ) with pytest.warns(UndefinedMetricWarning, match=expected_message): tpr, fpr, _ = roc_curve(y_true, y_score) assert_array_almost_equal(tpr, [0.0, 0.5, 1.0]) assert_array_almost_equal(fpr, [np.nan, np.nan, np.nan]) expected_message = ( "Only one class is present in y_true. " "ROC AUC score is not defined in that case." ) with pytest.warns(UndefinedMetricWarning, match=expected_message): auc = roc_auc_score(y_true, y_score) assert math.isnan(auc) # case with no negative samples y_true = [1, 1] y_score = [0.25, 0.75] # assert UndefinedMetricWarning because of no negative sample in y_true expected_message = ( "No negative samples in y_true, false positive value should be meaningless" ) with pytest.warns(UndefinedMetricWarning, match=expected_message): tpr, fpr, _ = roc_curve(y_true, y_score) assert_array_almost_equal(tpr, [np.nan, np.nan, np.nan]) assert_array_almost_equal(fpr, [0.0, 0.5, 1.0]) expected_message = ( "Only one class is present in y_true. " "ROC AUC score is not defined in that case." ) with pytest.warns(UndefinedMetricWarning, match=expected_message): auc = roc_auc_score(y_true, y_score) assert math.isnan(auc) # Multi-label classification task y_true = np.array([[0, 1], [0, 1]]) y_score = np.array([[0, 1], [0, 1]]) with pytest.warns(UndefinedMetricWarning, match=expected_message): roc_auc_score(y_true, y_score, average="macro") with pytest.warns(UndefinedMetricWarning, match=expected_message): roc_auc_score(y_true, y_score, average="weighted") assert_almost_equal(roc_auc_score(y_true, y_score, average="samples"), 1.0) assert_almost_equal(roc_auc_score(y_true, y_score, average="micro"), 1.0) y_true = np.array([[0, 1], [0, 1]]) y_score = np.array([[0, 1], [1, 0]]) with pytest.warns(UndefinedMetricWarning, match=expected_message): roc_auc_score(y_true, y_score, average="macro") with pytest.warns(UndefinedMetricWarning, match=expected_message): roc_auc_score(y_true, y_score, average="weighted") assert_almost_equal(roc_auc_score(y_true, y_score, average="samples"), 0.5) assert_almost_equal(roc_auc_score(y_true, y_score, average="micro"), 0.5) y_true = np.array([[1, 0], [0, 1]]) y_score = np.array([[0, 1], [1, 0]]) assert_almost_equal(roc_auc_score(y_true, y_score, average="macro"), 0) assert_almost_equal(roc_auc_score(y_true, y_score, average="weighted"), 0) assert_almost_equal(roc_auc_score(y_true, y_score, average="samples"), 0) assert_almost_equal(roc_auc_score(y_true, y_score, average="micro"), 0) y_true = np.array([[1, 0], [0, 1]]) y_score = np.array([[0.5, 0.5], [0.5, 0.5]]) assert_almost_equal(roc_auc_score(y_true, y_score, average="macro"), 0.5) assert_almost_equal(roc_auc_score(y_true, y_score, average="weighted"), 0.5) assert_almost_equal(roc_auc_score(y_true, y_score, average="samples"), 0.5) assert_almost_equal(roc_auc_score(y_true, y_score, average="micro"), 0.5) def test_roc_curve_drop_intermediate(): # Test that drop_intermediate drops the correct thresholds y_true = [0, 0, 0, 0, 1, 1] y_score = [0.0, 0.2, 0.5, 0.6, 0.7, 1.0] tpr, fpr, thresholds = roc_curve(y_true, y_score, drop_intermediate=True) assert_array_almost_equal(thresholds, [np.inf, 1.0, 0.7, 0.0]) # Test dropping thresholds with repeating scores y_true = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] y_score = [0.0, 0.1, 0.6, 0.6, 0.7, 0.8, 0.9, 0.6, 0.7, 0.8, 0.9, 0.9, 1.0] tpr, fpr, thresholds = roc_curve(y_true, y_score, drop_intermediate=True) assert_array_almost_equal(thresholds, [np.inf, 1.0, 0.9, 0.7, 0.6, 0.0]) def test_roc_curve_fpr_tpr_increasing(): # Ensure that fpr and tpr returned by roc_curve are increasing. # Construct an edge case with float y_score and sample_weight # when some adjacent values of fpr and tpr are actually the same. y_true = [0, 0, 1, 1, 1] y_score = [0.1, 0.7, 0.3, 0.4, 0.5] sample_weight = np.repeat(0.2, 5) fpr, tpr, _ = roc_curve(y_true, y_score, sample_weight=sample_weight) assert (np.diff(fpr) < 0).sum() == 0 assert (np.diff(tpr) < 0).sum() == 0 def test_auc(): # Test Area Under Curve (AUC) computation x = [0, 1] y = [0, 1] assert_array_almost_equal(auc(x, y), 0.5) x = [1, 0] y = [0, 1] assert_array_almost_equal(auc(x, y), 0.5) x = [1, 0, 0] y = [0, 1, 1] assert_array_almost_equal(auc(x, y), 0.5) x = [0, 1] y = [1, 1] assert_array_almost_equal(auc(x, y), 1) x = [0, 0.5, 1] y = [0, 0.5, 1] assert_array_almost_equal(auc(x, y), 0.5) def test_auc_errors(): # Incompatible shapes with pytest.raises(ValueError): auc([0.0, 0.5, 1.0], [0.1, 0.2]) # Too few x values with pytest.raises(ValueError): auc([0.0], [0.1]) # x is not in order x = [2, 1, 3, 4] y = [5, 6, 7, 8] error_message = "x is neither increasing nor decreasing : {}".format(np.array(x)) with pytest.raises(ValueError, match=re.escape(error_message)): auc(x, y) @pytest.mark.parametrize( "y_true, labels", [ (np.array([0, 1, 0, 2]), [0, 1, 2]), (np.array([0, 1, 0, 2]), None), (["a", "b", "a", "c"], ["a", "b", "c"]), (["a", "b", "a", "c"], None), ], ) def test_multiclass_ovo_roc_auc_toydata(y_true, labels): # Tests the one-vs-one multiclass ROC AUC algorithm # on a small example, representative of an expected use case. y_scores = np.array( [[0.1, 0.8, 0.1], [0.3, 0.4, 0.3], [0.35, 0.5, 0.15], [0, 0.2, 0.8]] ) # Used to compute the expected output. # Consider labels 0 and 1: # positive label is 0, negative label is 1 score_01 = roc_auc_score([1, 0, 1], [0.1, 0.3, 0.35]) # positive label is 1, negative label is 0 score_10 = roc_auc_score([0, 1, 0], [0.8, 0.4, 0.5]) average_score_01 = (score_01 + score_10) / 2 # Consider labels 0 and 2: score_02 = roc_auc_score([1, 1, 0], [0.1, 0.35, 0]) score_20 = roc_auc_score([0, 0, 1], [0.1, 0.15, 0.8]) average_score_02 = (score_02 + score_20) / 2 # Consider labels 1 and 2: score_12 = roc_auc_score([1, 0], [0.4, 0.2]) score_21 = roc_auc_score([0, 1], [0.3, 0.8]) average_score_12 = (score_12 + score_21) / 2 # Unweighted, one-vs-one multiclass ROC AUC algorithm ovo_unweighted_score = (average_score_01 + average_score_02 + average_score_12) / 3 assert_almost_equal( roc_auc_score(y_true, y_scores, labels=labels, multi_class="ovo"), ovo_unweighted_score, ) # Weighted, one-vs-one multiclass ROC AUC algorithm # Each term is weighted by the prevalence for the positive label. pair_scores = [average_score_01, average_score_02, average_score_12] prevalence = [0.75, 0.75, 0.50] ovo_weighted_score = np.average(pair_scores, weights=prevalence) assert_almost_equal( roc_auc_score( y_true, y_scores, labels=labels, multi_class="ovo", average="weighted" ), ovo_weighted_score, ) # Check that average=None raises NotImplemented error error_message = "average=None is not implemented for multi_class='ovo'." with pytest.raises(NotImplementedError, match=error_message): roc_auc_score(y_true, y_scores, labels=labels, multi_class="ovo", average=None) @pytest.mark.parametrize( "y_true, labels", [ (np.array([0, 2, 0, 2]), [0, 1, 2]), (np.array(["a", "d", "a", "d"]), ["a", "b", "d"]), ], ) def test_multiclass_ovo_roc_auc_toydata_binary(y_true, labels): # Tests the one-vs-one multiclass ROC AUC algorithm for binary y_true # # on a small example, representative of an expected use case. y_scores = np.array( [[0.2, 0.0, 0.8], [0.6, 0.0, 0.4], [0.55, 0.0, 0.45], [0.4, 0.0, 0.6]] ) # Used to compute the expected output. # Consider labels 0 and 1: # positive label is 0, negative label is 1 score_01 = roc_auc_score([1, 0, 1, 0], [0.2, 0.6, 0.55, 0.4]) # positive label is 1, negative label is 0 score_10 = roc_auc_score([0, 1, 0, 1], [0.8, 0.4, 0.45, 0.6]) ovo_score = (score_01 + score_10) / 2 assert_almost_equal( roc_auc_score(y_true, y_scores, labels=labels, multi_class="ovo"), ovo_score ) # Weighted, one-vs-one multiclass ROC AUC algorithm assert_almost_equal( roc_auc_score( y_true, y_scores, labels=labels, multi_class="ovo", average="weighted" ), ovo_score, ) @pytest.mark.parametrize( "y_true, labels", [ (np.array([0, 1, 2, 2]), None), (["a", "b", "c", "c"], None), ([0, 1, 2, 2], [0, 1, 2]), (["a", "b", "c", "c"], ["a", "b", "c"]), ], ) def test_multiclass_ovr_roc_auc_toydata(y_true, labels): # Tests the unweighted, one-vs-rest multiclass ROC AUC algorithm # on a small example, representative of an expected use case. y_scores = np.array( [[1.0, 0.0, 0.0], [0.1, 0.5, 0.4], [0.1, 0.1, 0.8], [0.3, 0.3, 0.4]] ) # Compute the expected result by individually computing the 'one-vs-rest' # ROC AUC scores for classes 0, 1, and 2. out_0 = roc_auc_score([1, 0, 0, 0], y_scores[:, 0]) out_1 = roc_auc_score([0, 1, 0, 0], y_scores[:, 1]) out_2 = roc_auc_score([0, 0, 1, 1], y_scores[:, 2]) assert_almost_equal( roc_auc_score(y_true, y_scores, multi_class="ovr", labels=labels, average=None), [out_0, out_1, out_2], ) # Compute unweighted results (default behaviour is average="macro") result_unweighted = (out_0 + out_1 + out_2) / 3.0 assert_almost_equal( roc_auc_score(y_true, y_scores, multi_class="ovr", labels=labels), result_unweighted, ) # Tests the weighted, one-vs-rest multiclass ROC AUC algorithm # on the same input (Provost & Domingos, 2000) result_weighted = out_0 * 0.25 + out_1 * 0.25 + out_2 * 0.5 assert_almost_equal( roc_auc_score( y_true, y_scores, multi_class="ovr", labels=labels, average="weighted" ), result_weighted, ) @pytest.mark.parametrize( "multi_class, average", [ ("ovr", "macro"), ("ovr", "micro"), ("ovo", "macro"), ], ) def test_perfect_imperfect_chance_multiclass_roc_auc(multi_class, average): y_true = np.array([3, 1, 2, 0]) # Perfect classifier (from a ranking point of view) has roc_auc_score = 1.0 y_perfect = [ [0.0, 0.0, 0.0, 1.0], [0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [0.75, 0.05, 0.05, 0.15], ] assert_almost_equal( roc_auc_score(y_true, y_perfect, multi_class=multi_class, average=average), 1.0, ) # Imperfect classifier has roc_auc_score < 1.0 y_imperfect = [ [0.0, 0.0, 0.0, 1.0], [0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 1.0], ] assert ( roc_auc_score(y_true, y_imperfect, multi_class=multi_class, average=average) < 1.0 ) # Chance level classifier has roc_auc_score = 5.0 y_chance = 0.25 * np.ones((4, 4)) assert roc_auc_score( y_true, y_chance, multi_class=multi_class, average=average ) == pytest.approx(0.5) def test_micro_averaged_ovr_roc_auc(global_random_seed): seed = global_random_seed # Let's generate a set of random predictions and matching true labels such # that the predictions are not perfect. To make the problem more interesting, # we use an imbalanced class distribution (by using different parameters # in the Dirichlet prior (conjugate prior of the multinomial distribution). y_pred = stats.dirichlet.rvs([2.0, 1.0, 0.5], size=1000, random_state=seed) y_true = np.asarray( [ stats.multinomial.rvs(n=1, p=y_pred_i, random_state=seed).argmax() for y_pred_i in y_pred ] ) y_onehot = label_binarize(y_true, classes=[0, 1, 2]) fpr, tpr, _ = roc_curve(y_onehot.ravel(), y_pred.ravel()) roc_auc_by_hand = auc(fpr, tpr) roc_auc_auto = roc_auc_score(y_true, y_pred, multi_class="ovr", average="micro") assert roc_auc_by_hand == pytest.approx(roc_auc_auto) @pytest.mark.parametrize( "msg, y_true, labels", [ ("Parameter 'labels' must be unique", np.array([0, 1, 2, 2]), [0, 2, 0]), ( "Parameter 'labels' must be unique", np.array(["a", "b", "c", "c"]), ["a", "a", "b"], ), ( ( "Number of classes in y_true not equal to the number of columns " "in 'y_score'" ), np.array([0, 2, 0, 2]), None, ), ( "Parameter 'labels' must be ordered", np.array(["a", "b", "c", "c"]), ["a", "c", "b"], ), ( ( "Number of given labels, 2, not equal to the number of columns in " "'y_score', 3" ), np.array([0, 1, 2, 2]), [0, 1], ), ( ( "Number of given labels, 2, not equal to the number of columns in " "'y_score', 3" ), np.array(["a", "b", "c", "c"]), ["a", "b"], ), ( ( "Number of given labels, 4, not equal to the number of columns in " "'y_score', 3" ), np.array([0, 1, 2, 2]), [0, 1, 2, 3], ), ( ( "Number of given labels, 4, not equal to the number of columns in " "'y_score', 3" ), np.array(["a", "b", "c", "c"]), ["a", "b", "c", "d"], ), ( "'y_true' contains labels not in parameter 'labels'", np.array(["a", "b", "c", "e"]), ["a", "b", "c"], ), ( "'y_true' contains labels not in parameter 'labels'", np.array(["a", "b", "c", "d"]), ["a", "b", "c"], ), ( "'y_true' contains labels not in parameter 'labels'", np.array([0, 1, 2, 3]), [0, 1, 2], ), ], ) @pytest.mark.parametrize("multi_class", ["ovo", "ovr"]) def test_roc_auc_score_multiclass_labels_error(msg, y_true, labels, multi_class): y_scores = np.array( [[0.1, 0.8, 0.1], [0.3, 0.4, 0.3], [0.35, 0.5, 0.15], [0, 0.2, 0.8]] ) with pytest.raises(ValueError, match=msg): roc_auc_score(y_true, y_scores, labels=labels, multi_class=multi_class) @pytest.mark.parametrize( "msg, kwargs", [ ( ( r"average must be one of \('macro', 'weighted', None\) for " r"multiclass problems" ), {"average": "samples", "multi_class": "ovo"}, ), ( ( r"average must be one of \('micro', 'macro', 'weighted', None\) for " r"multiclass problems" ), {"average": "samples", "multi_class": "ovr"}, ), ( ( r"sample_weight is not supported for multiclass one-vs-one " r"ROC AUC, 'sample_weight' must be None in this case" ), {"multi_class": "ovo", "sample_weight": []}, ), ( ( r"Partial AUC computation not available in multiclass setting, " r"'max_fpr' must be set to `None`, received `max_fpr=0.5` " r"instead" ), {"multi_class": "ovo", "max_fpr": 0.5}, ), (r"multi_class must be in \('ovo', 'ovr'\)", {}), ], ) def test_roc_auc_score_multiclass_error(msg, kwargs): # Test that roc_auc_score function returns an error when trying # to compute multiclass AUC for parameters where an output # is not defined. rng = check_random_state(404) y_score = rng.rand(20, 3) y_prob = softmax(y_score) y_true = rng.randint(0, 3, size=20) with pytest.raises(ValueError, match=msg): roc_auc_score(y_true, y_prob, **kwargs) def test_auc_score_non_binary_class(): # Test that roc_auc_score function returns an error when trying # to compute AUC for non-binary class values. rng = check_random_state(404) y_pred = rng.rand(10) # y_true contains only one class value y_true = np.zeros(10, dtype="int") warn_message = ( "Only one class is present in y_true. " "ROC AUC score is not defined in that case." ) with pytest.warns(UndefinedMetricWarning, match=warn_message): roc_auc_score(y_true, y_pred) y_true = np.ones(10, dtype="int") with pytest.warns(UndefinedMetricWarning, match=warn_message): roc_auc_score(y_true, y_pred) y_true = np.full(10, -1, dtype="int") with pytest.warns(UndefinedMetricWarning, match=warn_message): roc_auc_score(y_true, y_pred) @pytest.mark.parametrize("curve_func", CURVE_FUNCS) def test_binary_clf_curve_multiclass_error(curve_func): rng = check_random_state(404) y_true = rng.randint(0, 3, size=10) y_pred = rng.rand(10) msg = "multiclass format is not supported" with pytest.raises(ValueError, match=msg): curve_func(y_true, y_pred) @pytest.mark.parametrize("curve_func", CURVE_FUNCS) def test_binary_clf_curve_implicit_pos_label(curve_func): # Check that using string class labels raises an informative # error for any supported string dtype: msg = ( "y_true takes value in {'a', 'b'} and pos_label is " "not specified: either make y_true take " "value in {0, 1} or {-1, 1} or pass pos_label " "explicitly." ) with pytest.raises(ValueError, match=msg): curve_func(np.array(["a", "b"], dtype="<U1"), [0.0, 1.0]) with pytest.raises(ValueError, match=msg): curve_func(np.array(["a", "b"], dtype=object), [0.0, 1.0]) # Check that it is possible to use floating point class labels # that are interpreted similarly to integer class labels: y_pred = [0.0, 1.0, 0.2, 0.42] int_curve = curve_func([0, 1, 1, 0], y_pred) float_curve = curve_func([0.0, 1.0, 1.0, 0.0], y_pred) for int_curve_part, float_curve_part in zip(int_curve, float_curve): np.testing.assert_allclose(int_curve_part, float_curve_part) # TODO(1.7): Update test to check for error when bytes support is removed. @pytest.mark.filterwarnings("ignore:Support for labels represented as bytes") @pytest.mark.parametrize("curve_func", [precision_recall_curve, roc_curve]) @pytest.mark.parametrize("labels_type", ["list", "array"]) def test_binary_clf_curve_implicit_bytes_pos_label(curve_func, labels_type): # Check that using bytes class labels raises an informative # error for any supported string dtype: labels = _convert_container([b"a", b"b"], labels_type) msg = ( "y_true takes value in {b'a', b'b'} and pos_label is not " "specified: either make y_true take value in {0, 1} or " "{-1, 1} or pass pos_label explicitly." ) with pytest.raises(ValueError, match=msg): curve_func(labels, [0.0, 1.0]) @pytest.mark.parametrize("curve_func", CURVE_FUNCS) def test_binary_clf_curve_zero_sample_weight(curve_func): y_true = [0, 0, 1, 1, 1] y_score = [0.1, 0.2, 0.3, 0.4, 0.5] sample_weight = [1, 1, 1, 0.5, 0] result_1 = curve_func(y_true, y_score, sample_weight=sample_weight) result_2 = curve_func(y_true[:-1], y_score[:-1], sample_weight=sample_weight[:-1]) for arr_1, arr_2 in zip(result_1, result_2): assert_allclose(arr_1, arr_2) @pytest.mark.parametrize("drop", [True, False]) def test_precision_recall_curve(drop): y_true, _, y_score = make_prediction(binary=True) _test_precision_recall_curve(y_true, y_score, drop) # Make sure the first point of the Precision-Recall on the right is: # (p=1.0, r=class balance) on a non-balanced dataset [1:] p, r, t = precision_recall_curve(y_true[1:], y_score[1:], drop_intermediate=drop) assert r[0] == 1.0 assert p[0] == y_true[1:].mean() # Use {-1, 1} for labels; make sure original labels aren't modified y_true[np.where(y_true == 0)] = -1 y_true_copy = y_true.copy() _test_precision_recall_curve(y_true, y_score, drop) assert_array_equal(y_true_copy, y_true) labels = [1, 0, 0, 1] predict_probas = [1, 2, 3, 4] p, r, t = precision_recall_curve(labels, predict_probas, drop_intermediate=drop) if drop: assert_allclose(p, [0.5, 0.33333333, 1.0, 1.0]) assert_allclose(r, [1.0, 0.5, 0.5, 0.0]) assert_allclose(t, [1, 2, 4]) else: assert_allclose(p, [0.5, 0.33333333, 0.5, 1.0, 1.0]) assert_allclose(r, [1.0, 0.5, 0.5, 0.5, 0.0]) assert_allclose(t, [1, 2, 3, 4]) assert p.size == r.size assert p.size == t.size + 1 def _test_precision_recall_curve(y_true, y_score, drop): # Test Precision-Recall and area under PR curve p, r, thresholds = precision_recall_curve(y_true, y_score, drop_intermediate=drop) precision_recall_auc = _average_precision_slow(y_true, y_score) assert_array_almost_equal(precision_recall_auc, 0.859, 3) assert_array_almost_equal( precision_recall_auc, average_precision_score(y_true, y_score) ) # `_average_precision` is not very precise in case of 0.5 ties: be tolerant assert_almost_equal( _average_precision(y_true, y_score), precision_recall_auc, decimal=2 ) assert p.size == r.size assert p.size == thresholds.size + 1 # Smoke test in the case of proba having only one value p, r, thresholds = precision_recall_curve( y_true, np.zeros_like(y_score), drop_intermediate=drop ) assert p.size == r.size assert p.size == thresholds.size + 1 @pytest.mark.parametrize("drop", [True, False]) def test_precision_recall_curve_toydata(drop): with np.errstate(all="raise"): # Binary classification y_true = [0, 1] y_score = [0, 1] p, r, _ = precision_recall_curve(y_true, y_score, drop_intermediate=drop) auc_prc = average_precision_score(y_true, y_score) assert_array_almost_equal(p, [0.5, 1, 1]) assert_array_almost_equal(r, [1, 1, 0]) assert_almost_equal(auc_prc, 1.0) y_true = [0, 1] y_score = [1, 0] p, r, _ = precision_recall_curve(y_true, y_score, drop_intermediate=drop) auc_prc = average_precision_score(y_true, y_score) assert_array_almost_equal(p, [0.5, 0.0, 1.0]) assert_array_almost_equal(r, [1.0, 0.0, 0.0]) # Here we are doing a terrible prediction: we are always getting # it wrong, hence the average_precision_score is the accuracy at # chance: 50% assert_almost_equal(auc_prc, 0.5) y_true = [1, 0] y_score = [1, 1] p, r, _ = precision_recall_curve(y_true, y_score, drop_intermediate=drop) auc_prc = average_precision_score(y_true, y_score) assert_array_almost_equal(p, [0.5, 1]) assert_array_almost_equal(r, [1.0, 0]) assert_almost_equal(auc_prc, 0.5) y_true = [1, 0] y_score = [1, 0] p, r, _ = precision_recall_curve(y_true, y_score, drop_intermediate=drop) auc_prc = average_precision_score(y_true, y_score) assert_array_almost_equal(p, [0.5, 1, 1]) assert_array_almost_equal(r, [1, 1, 0]) assert_almost_equal(auc_prc, 1.0) y_true = [1, 0] y_score = [0.5, 0.5] p, r, _ = precision_recall_curve(y_true, y_score, drop_intermediate=drop) auc_prc = average_precision_score(y_true, y_score) assert_array_almost_equal(p, [0.5, 1]) assert_array_almost_equal(r, [1, 0.0]) assert_almost_equal(auc_prc, 0.5) y_true = [0, 0] y_score = [0.25, 0.75] with pytest.warns(UserWarning, match="No positive class found in y_true"): p, r, _ = precision_recall_curve(y_true, y_score, drop_intermediate=drop) with pytest.warns(UserWarning, match="No positive class found in y_true"): auc_prc = average_precision_score(y_true, y_score) assert_allclose(p, [0, 0, 1]) assert_allclose(r, [1, 1, 0]) assert_allclose(auc_prc, 0) y_true = [1, 1] y_score = [0.25, 0.75] p, r, _ = precision_recall_curve(y_true, y_score, drop_intermediate=drop) assert_almost_equal(average_precision_score(y_true, y_score), 1.0) assert_array_almost_equal(p, [1.0, 1.0, 1.0]) assert_array_almost_equal(r, [1, 0.5, 0.0]) # Multi-label classification task y_true = np.array([[0, 1], [0, 1]]) y_score = np.array([[0, 1], [0, 1]]) with pytest.warns(UserWarning, match="No positive class found in y_true"): assert_allclose( average_precision_score(y_true, y_score, average="macro"), 0.5 ) with pytest.warns(UserWarning, match="No positive class found in y_true"): assert_allclose( average_precision_score(y_true, y_score, average="weighted"), 1.0 ) assert_allclose( average_precision_score(y_true, y_score, average="samples"), 1.0 ) assert_allclose(average_precision_score(y_true, y_score, average="micro"), 1.0) y_true = np.array([[0, 1], [0, 1]]) y_score = np.array([[0, 1], [1, 0]]) with pytest.warns(UserWarning, match="No positive class found in y_true"): assert_allclose( average_precision_score(y_true, y_score, average="macro"), 0.5 ) with pytest.warns(UserWarning, match="No positive class found in y_true"): assert_allclose( average_precision_score(y_true, y_score, average="weighted"), 1.0 ) assert_allclose( average_precision_score(y_true, y_score, average="samples"), 0.75 ) assert_allclose(average_precision_score(y_true, y_score, average="micro"), 0.5) y_true = np.array([[1, 0], [0, 1]]) y_score = np.array([[0, 1], [1, 0]]) assert_almost_equal( average_precision_score(y_true, y_score, average="macro"), 0.5 ) assert_almost_equal( average_precision_score(y_true, y_score, average="weighted"), 0.5 ) assert_almost_equal( average_precision_score(y_true, y_score, average="samples"), 0.5 ) assert_almost_equal( average_precision_score(y_true, y_score, average="micro"), 0.5 ) y_true = np.array([[0, 0], [0, 0]]) y_score = np.array([[0, 1], [0, 1]]) with pytest.warns(UserWarning, match="No positive class found in y_true"): assert_allclose( average_precision_score(y_true, y_score, average="macro"), 0.0 ) assert_allclose( average_precision_score(y_true, y_score, average="weighted"), 0.0 ) with pytest.warns(UserWarning, match="No positive class found in y_true"): assert_allclose( average_precision_score(y_true, y_score, average="samples"), 0.0 ) with pytest.warns(UserWarning, match="No positive class found in y_true"): assert_allclose( average_precision_score(y_true, y_score, average="micro"), 0.0 ) y_true = np.array([[1, 1], [1, 1]]) y_score = np.array([[0, 1], [0, 1]]) assert_allclose(average_precision_score(y_true, y_score, average="macro"), 1.0) assert_allclose( average_precision_score(y_true, y_score, average="weighted"), 1.0 ) assert_allclose( average_precision_score(y_true, y_score, average="samples"), 1.0 ) assert_allclose(average_precision_score(y_true, y_score, average="micro"), 1.0) y_true = np.array([[1, 0], [0, 1]]) y_score = np.array([[0.5, 0.5], [0.5, 0.5]]) assert_almost_equal( average_precision_score(y_true, y_score, average="macro"), 0.5 ) assert_almost_equal( average_precision_score(y_true, y_score, average="weighted"), 0.5 ) assert_almost_equal( average_precision_score(y_true, y_score, average="samples"), 0.5 ) assert_almost_equal( average_precision_score(y_true, y_score, average="micro"), 0.5 ) with np.errstate(all="ignore"): # if one class is never present weighted should not be NaN y_true = np.array([[0, 0], [0, 1]]) y_score = np.array([[0, 0], [0, 1]]) with pytest.warns(UserWarning, match="No positive class found in y_true"): assert_allclose( average_precision_score(y_true, y_score, average="weighted"), 1 ) def test_precision_recall_curve_drop_intermediate(): """Check the behaviour of the `drop_intermediate` parameter.""" y_true = [0, 0, 0, 0, 1, 1] y_score = [0.0, 0.2, 0.5, 0.6, 0.7, 1.0] precision, recall, thresholds = precision_recall_curve( y_true, y_score, drop_intermediate=True ) assert_allclose(thresholds, [0.0, 0.7, 1.0]) # Test dropping thresholds with repeating scores y_true = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] y_score = [0.0, 0.1, 0.6, 0.6, 0.7, 0.8, 0.9, 0.6, 0.7, 0.8, 0.9, 0.9, 1.0] precision, recall, thresholds = precision_recall_curve( y_true, y_score, drop_intermediate=True ) assert_allclose(thresholds, [0.0, 0.6, 0.7, 0.8, 0.9, 1.0]) # Test all false keeps only endpoints y_true = [0, 0, 0, 0] y_score = [0.0, 0.1, 0.2, 0.3] precision, recall, thresholds = precision_recall_curve( y_true, y_score, drop_intermediate=True ) assert_allclose(thresholds, [0.0, 0.3]) # Test all true keeps all thresholds y_true = [1, 1, 1, 1] y_score = [0.0, 0.1, 0.2, 0.3] precision, recall, thresholds = precision_recall_curve( y_true, y_score, drop_intermediate=True ) assert_allclose(thresholds, [0.0, 0.1, 0.2, 0.3]) def test_average_precision_constant_values(): # Check the average_precision_score of a constant predictor is # the TPR # Generate a dataset with 25% of positives y_true = np.zeros(100, dtype=int) y_true[::4] = 1 # And a constant score y_score = np.ones(100) # The precision is then the fraction of positive whatever the recall # is, as there is only one threshold: assert average_precision_score(y_true, y_score) == 0.25 def test_average_precision_score_binary_pos_label_errors(): # Raise an error when pos_label is not in binary y_true y_true = np.array([0, 1]) y_pred = np.array([0, 1]) err_msg = r"pos_label=2 is not a valid label. It should be one of \[0, 1\]" with pytest.raises(ValueError, match=err_msg): average_precision_score(y_true, y_pred, pos_label=2) def test_average_precision_score_multilabel_pos_label_errors(): # Raise an error for multilabel-indicator y_true with # pos_label other than 1 y_true = np.array([[1, 0], [0, 1], [0, 1], [1, 0]]) y_pred = np.array([[0.9, 0.1], [0.1, 0.9], [0.8, 0.2], [0.2, 0.8]]) err_msg = ( "Parameter pos_label is fixed to 1 for multilabel-indicator y_true. " "Do not set pos_label or set pos_label to 1." ) with pytest.raises(ValueError, match=err_msg): average_precision_score(y_true, y_pred, pos_label=0) def test_average_precision_score_multiclass_pos_label_errors(): # Raise an error for multiclass y_true with pos_label other than 1 y_true = np.array([0, 1, 2, 0, 1, 2]) y_pred = np.array( [ [0.5, 0.2, 0.1], [0.4, 0.5, 0.3], [0.1, 0.2, 0.6], [0.2, 0.3, 0.5], [0.2, 0.3, 0.5], [0.2, 0.3, 0.5], ] ) err_msg = ( "Parameter pos_label is fixed to 1 for multiclass y_true. " "Do not set pos_label or set pos_label to 1." ) with pytest.raises(ValueError, match=err_msg): average_precision_score(y_true, y_pred, pos_label=3) def test_score_scale_invariance(): # Test that average_precision_score and roc_auc_score are invariant by # the scaling or shifting of probabilities # This test was expanded (added scaled_down) in response to github # issue #3864 (and others), where overly aggressive rounding was causing # problems for users with very small y_score values y_true, _, y_score = make_prediction(binary=True) roc_auc = roc_auc_score(y_true, y_score) roc_auc_scaled_up = roc_auc_score(y_true, 100 * y_score) roc_auc_scaled_down = roc_auc_score(y_true, 1e-6 * y_score) roc_auc_shifted = roc_auc_score(y_true, y_score - 10) assert roc_auc == roc_auc_scaled_up assert roc_auc == roc_auc_scaled_down assert roc_auc == roc_auc_shifted pr_auc = average_precision_score(y_true, y_score) pr_auc_scaled_up = average_precision_score(y_true, 100 * y_score) pr_auc_scaled_down = average_precision_score(y_true, 1e-6 * y_score) pr_auc_shifted = average_precision_score(y_true, y_score - 10) assert pr_auc == pr_auc_scaled_up assert pr_auc == pr_auc_scaled_down assert pr_auc == pr_auc_shifted @pytest.mark.parametrize( "y_true,y_score,expected_fpr,expected_fnr", [ ([0, 0, 1], [0, 0.5, 1], [0], [0]), ([0, 0, 1], [0, 0.25, 0.5], [0], [0]), ([0, 0, 1], [0.5, 0.75, 1], [0], [0]), ([0, 0, 1], [0.25, 0.5, 0.75], [0], [0]), ([0, 1, 0], [0, 0.5, 1], [0.5], [0]), ([0, 1, 0], [0, 0.25, 0.5], [0.5], [0]), ([0, 1, 0], [0.5, 0.75, 1], [0.5], [0]), ([0, 1, 0], [0.25, 0.5, 0.75], [0.5], [0]), ([0, 1, 1], [0, 0.5, 1], [0.0], [0]), ([0, 1, 1], [0, 0.25, 0.5], [0], [0]), ([0, 1, 1], [0.5, 0.75, 1], [0], [0]), ([0, 1, 1], [0.25, 0.5, 0.75], [0], [0]), ([1, 0, 0], [0, 0.5, 1], [1, 1, 0.5], [0, 1, 1]), ([1, 0, 0], [0, 0.25, 0.5], [1, 1, 0.5], [0, 1, 1]), ([1, 0, 0], [0.5, 0.75, 1], [1, 1, 0.5], [0, 1, 1]), ([1, 0, 0], [0.25, 0.5, 0.75], [1, 1, 0.5], [0, 1, 1]), ([1, 0, 1], [0, 0.5, 1], [1, 1, 0], [0, 0.5, 0.5]), ([1, 0, 1], [0, 0.25, 0.5], [1, 1, 0], [0, 0.5, 0.5]), ([1, 0, 1], [0.5, 0.75, 1], [1, 1, 0], [0, 0.5, 0.5]), ([1, 0, 1], [0.25, 0.5, 0.75], [1, 1, 0], [0, 0.5, 0.5]), ], ) def test_det_curve_toydata(y_true, y_score, expected_fpr, expected_fnr): # Check on a batch of small examples. fpr, fnr, _ = det_curve(y_true, y_score) assert_allclose(fpr, expected_fpr) assert_allclose(fnr, expected_fnr) @pytest.mark.parametrize( "y_true,y_score,expected_fpr,expected_fnr", [ ([1, 0], [0.5, 0.5], [1], [0]), ([0, 1], [0.5, 0.5], [1], [0]), ([0, 0, 1], [0.25, 0.5, 0.5], [0.5], [0]), ([0, 1, 0], [0.25, 0.5, 0.5], [0.5], [0]), ([0, 1, 1], [0.25, 0.5, 0.5], [0], [0]), ([1, 0, 0], [0.25, 0.5, 0.5], [1], [0]), ([1, 0, 1], [0.25, 0.5, 0.5], [1], [0]), ([1, 1, 0], [0.25, 0.5, 0.5], [1], [0]), ], ) def test_det_curve_tie_handling(y_true, y_score, expected_fpr, expected_fnr): fpr, fnr, _ = det_curve(y_true, y_score) assert_allclose(fpr, expected_fpr) assert_allclose(fnr, expected_fnr) def test_det_curve_sanity_check(): # Exactly duplicated inputs yield the same result. assert_allclose( det_curve([0, 0, 1], [0, 0.5, 1]), det_curve([0, 0, 0, 0, 1, 1], [0, 0, 0.5, 0.5, 1, 1]), ) @pytest.mark.parametrize("y_score", [(0), (0.25), (0.5), (0.75), (1)]) def test_det_curve_constant_scores(y_score): fpr, fnr, threshold = det_curve( y_true=[0, 1, 0, 1, 0, 1], y_score=np.full(6, y_score) ) assert_allclose(fpr, [1]) assert_allclose(fnr, [0]) assert_allclose(threshold, [y_score]) @pytest.mark.parametrize( "y_true", [ ([0, 0, 0, 0, 0, 1]), ([0, 0, 0, 0, 1, 1]), ([0, 0, 0, 1, 1, 1]), ([0, 0, 1, 1, 1, 1]), ([0, 1, 1, 1, 1, 1]), ], ) def test_det_curve_perfect_scores(y_true): fpr, fnr, _ = det_curve(y_true=y_true, y_score=y_true) assert_allclose(fpr, [0]) assert_allclose(fnr, [0]) @pytest.mark.parametrize( "y_true, y_pred, err_msg", [ ([0, 1], [0, 0.5, 1], "inconsistent numbers of samples"), ([0, 1, 1], [0, 0.5], "inconsistent numbers of samples"), ([0, 0, 0], [0, 0.5, 1], "Only one class is present in y_true"), ([1, 1, 1], [0, 0.5, 1], "Only one class is present in y_true"), ( ["cancer", "cancer", "not cancer"], [0.2, 0.3, 0.8], "pos_label is not specified", ), ], ) def test_det_curve_bad_input(y_true, y_pred, err_msg): # input variables with inconsistent numbers of samples with pytest.raises(ValueError, match=err_msg): det_curve(y_true, y_pred) def test_det_curve_pos_label(): y_true = ["cancer"] * 3 + ["not cancer"] * 7 y_pred_pos_not_cancer = np.array([0.1, 0.4, 0.6, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.9]) y_pred_pos_cancer = 1 - y_pred_pos_not_cancer fpr_pos_cancer, fnr_pos_cancer, th_pos_cancer = det_curve( y_true, y_pred_pos_cancer, pos_label="cancer", ) fpr_pos_not_cancer, fnr_pos_not_cancer, th_pos_not_cancer = det_curve( y_true, y_pred_pos_not_cancer, pos_label="not cancer", ) # check that the first threshold will change depending which label we # consider positive assert th_pos_cancer[0] == pytest.approx(0.4) assert th_pos_not_cancer[0] == pytest.approx(0.2) # check for the symmetry of the fpr and fnr assert_allclose(fpr_pos_cancer, fnr_pos_not_cancer[::-1]) assert_allclose(fnr_pos_cancer, fpr_pos_not_cancer[::-1]) def check_lrap_toy(lrap_score): # Check on several small example that it works assert_almost_equal(lrap_score([[0, 1]], [[0.25, 0.75]]), 1) assert_almost_equal(lrap_score([[0, 1]], [[0.75, 0.25]]), 1 / 2) assert_almost_equal(lrap_score([[1, 1]], [[0.75, 0.25]]), 1) assert_almost_equal(lrap_score([[0, 0, 1]], [[0.25, 0.5, 0.75]]), 1) assert_almost_equal(lrap_score([[0, 1, 0]], [[0.25, 0.5, 0.75]]), 1 / 2) assert_almost_equal(lrap_score([[0, 1, 1]], [[0.25, 0.5, 0.75]]), 1) assert_almost_equal(lrap_score([[1, 0, 0]], [[0.25, 0.5, 0.75]]), 1 / 3) assert_almost_equal( lrap_score([[1, 0, 1]], [[0.25, 0.5, 0.75]]), (2 / 3 + 1 / 1) / 2 ) assert_almost_equal( lrap_score([[1, 1, 0]], [[0.25, 0.5, 0.75]]), (2 / 3 + 1 / 2) / 2 ) assert_almost_equal(lrap_score([[0, 0, 1]], [[0.75, 0.5, 0.25]]), 1 / 3) assert_almost_equal(lrap_score([[0, 1, 0]], [[0.75, 0.5, 0.25]]), 1 / 2) assert_almost_equal( lrap_score([[0, 1, 1]], [[0.75, 0.5, 0.25]]), (1 / 2 + 2 / 3) / 2 ) assert_almost_equal(lrap_score([[1, 0, 0]], [[0.75, 0.5, 0.25]]), 1) assert_almost_equal(lrap_score([[1, 0, 1]], [[0.75, 0.5, 0.25]]), (1 + 2 / 3) / 2) assert_almost_equal(lrap_score([[1, 1, 0]], [[0.75, 0.5, 0.25]]), 1) assert_almost_equal(lrap_score([[1, 1, 1]], [[0.75, 0.5, 0.25]]), 1) assert_almost_equal(lrap_score([[0, 0, 1]], [[0.5, 0.75, 0.25]]), 1 / 3) assert_almost_equal(lrap_score([[0, 1, 0]], [[0.5, 0.75, 0.25]]), 1) assert_almost_equal(lrap_score([[0, 1, 1]], [[0.5, 0.75, 0.25]]), (1 + 2 / 3) / 2) assert_almost_equal(lrap_score([[1, 0, 0]], [[0.5, 0.75, 0.25]]), 1 / 2) assert_almost_equal( lrap_score([[1, 0, 1]], [[0.5, 0.75, 0.25]]), (1 / 2 + 2 / 3) / 2 ) assert_almost_equal(lrap_score([[1, 1, 0]], [[0.5, 0.75, 0.25]]), 1) assert_almost_equal(lrap_score([[1, 1, 1]], [[0.5, 0.75, 0.25]]), 1) # Tie handling assert_almost_equal(lrap_score([[1, 0]], [[0.5, 0.5]]), 0.5) assert_almost_equal(lrap_score([[0, 1]], [[0.5, 0.5]]), 0.5) assert_almost_equal(lrap_score([[1, 1]], [[0.5, 0.5]]), 1) assert_almost_equal(lrap_score([[0, 0, 1]], [[0.25, 0.5, 0.5]]), 0.5) assert_almost_equal(lrap_score([[0, 1, 0]], [[0.25, 0.5, 0.5]]), 0.5) assert_almost_equal(lrap_score([[0, 1, 1]], [[0.25, 0.5, 0.5]]), 1) assert_almost_equal(lrap_score([[1, 0, 0]], [[0.25, 0.5, 0.5]]), 1 / 3) assert_almost_equal( lrap_score([[1, 0, 1]], [[0.25, 0.5, 0.5]]), (2 / 3 + 1 / 2) / 2 ) assert_almost_equal( lrap_score([[1, 1, 0]], [[0.25, 0.5, 0.5]]), (2 / 3 + 1 / 2) / 2 ) assert_almost_equal(lrap_score([[1, 1, 1]], [[0.25, 0.5, 0.5]]), 1) assert_almost_equal(lrap_score([[1, 1, 0]], [[0.5, 0.5, 0.5]]), 2 / 3) assert_almost_equal(lrap_score([[1, 1, 1, 0]], [[0.5, 0.5, 0.5, 0.5]]), 3 / 4) def check_zero_or_all_relevant_labels(lrap_score): random_state = check_random_state(0) for n_labels in range(2, 5): y_score = random_state.uniform(size=(1, n_labels)) y_score_ties = np.zeros_like(y_score) # No relevant labels y_true = np.zeros((1, n_labels)) assert lrap_score(y_true, y_score) == 1.0 assert lrap_score(y_true, y_score_ties) == 1.0 # Only relevant labels y_true = np.ones((1, n_labels)) assert lrap_score(y_true, y_score) == 1.0 assert lrap_score(y_true, y_score_ties) == 1.0 # Degenerate case: only one label assert_almost_equal( lrap_score([[1], [0], [1], [0]], [[0.5], [0.5], [0.5], [0.5]]), 1.0 ) def check_lrap_error_raised(lrap_score): # Raise value error if not appropriate format with pytest.raises(ValueError): lrap_score([0, 1, 0], [0.25, 0.3, 0.2]) with pytest.raises(ValueError): lrap_score([0, 1, 2], [[0.25, 0.75, 0.0], [0.7, 0.3, 0.0], [0.8, 0.2, 0.0]]) with pytest.raises(ValueError): lrap_score( [(0), (1), (2)], [[0.25, 0.75, 0.0], [0.7, 0.3, 0.0], [0.8, 0.2, 0.0]] ) # Check that y_true.shape != y_score.shape raise the proper exception with pytest.raises(ValueError): lrap_score([[0, 1], [0, 1]], [0, 1]) with pytest.raises(ValueError): lrap_score([[0, 1], [0, 1]], [[0, 1]]) with pytest.raises(ValueError): lrap_score([[0, 1], [0, 1]], [[0], [1]]) with pytest.raises(ValueError): lrap_score([[0, 1]], [[0, 1], [0, 1]]) with pytest.raises(ValueError): lrap_score([[0], [1]], [[0, 1], [0, 1]]) with pytest.raises(ValueError): lrap_score([[0, 1], [0, 1]], [[0], [1]]) def check_lrap_only_ties(lrap_score): # Check tie handling in score # Basic check with only ties and increasing label space for n_labels in range(2, 10): y_score = np.ones((1, n_labels)) # Check for growing number of consecutive relevant for n_relevant in range(1, n_labels): # Check for a bunch of positions for pos in range(n_labels - n_relevant): y_true = np.zeros((1, n_labels)) y_true[0, pos : pos + n_relevant] = 1 assert_almost_equal(lrap_score(y_true, y_score), n_relevant / n_labels) def check_lrap_without_tie_and_increasing_score(lrap_score): # Check that Label ranking average precision works for various # Basic check with increasing label space size and decreasing score for n_labels in range(2, 10): y_score = n_labels - (np.arange(n_labels).reshape((1, n_labels)) + 1) # First and last y_true = np.zeros((1, n_labels)) y_true[0, 0] = 1 y_true[0, -1] = 1 assert_almost_equal(lrap_score(y_true, y_score), (2 / n_labels + 1) / 2) # Check for growing number of consecutive relevant label for n_relevant in range(1, n_labels): # Check for a bunch of position for pos in range(n_labels - n_relevant): y_true = np.zeros((1, n_labels)) y_true[0, pos : pos + n_relevant] = 1 assert_almost_equal( lrap_score(y_true, y_score), sum( (r + 1) / ((pos + r + 1) * n_relevant) for r in range(n_relevant) ), ) def _my_lrap(y_true, y_score): """Simple implementation of label ranking average precision""" check_consistent_length(y_true, y_score) y_true = check_array(y_true) y_score = check_array(y_score) n_samples, n_labels = y_true.shape score = np.empty((n_samples,)) for i in range(n_samples): # The best rank correspond to 1. Rank higher than 1 are worse. # The best inverse ranking correspond to n_labels. unique_rank, inv_rank = np.unique(y_score[i], return_inverse=True) n_ranks = unique_rank.size rank = n_ranks - inv_rank # Rank need to be corrected to take into account ties # ex: rank 1 ex aequo means that both label are rank 2. corr_rank = np.bincount(rank, minlength=n_ranks + 1).cumsum() rank = corr_rank[rank] relevant = y_true[i].nonzero()[0] if relevant.size == 0 or relevant.size == n_labels: score[i] = 1 continue score[i] = 0.0 for label in relevant: # Let's count the number of relevant label with better rank # (smaller rank). n_ranked_above = sum(rank[r] <= rank[label] for r in relevant) # Weight by the rank of the actual label score[i] += n_ranked_above / rank[label] score[i] /= relevant.size return score.mean() def check_alternative_lrap_implementation( lrap_score, n_classes=5, n_samples=20, random_state=0 ): _, y_true = make_multilabel_classification( n_features=1, allow_unlabeled=False, random_state=random_state, n_classes=n_classes, n_samples=n_samples, ) # Score with ties y_score = _sparse_random_matrix( n_components=y_true.shape[0], n_features=y_true.shape[1], random_state=random_state, ) if hasattr(y_score, "toarray"): y_score = y_score.toarray() score_lrap = label_ranking_average_precision_score(y_true, y_score) score_my_lrap = _my_lrap(y_true, y_score) assert_almost_equal(score_lrap, score_my_lrap) # Uniform score random_state = check_random_state(random_state) y_score = random_state.uniform(size=(n_samples, n_classes)) score_lrap = label_ranking_average_precision_score(y_true, y_score) score_my_lrap = _my_lrap(y_true, y_score) assert_almost_equal(score_lrap, score_my_lrap) @pytest.mark.parametrize( "check", ( check_lrap_toy, check_lrap_without_tie_and_increasing_score, check_lrap_only_ties, check_zero_or_all_relevant_labels, ), ) @pytest.mark.parametrize("func", (label_ranking_average_precision_score, _my_lrap)) def test_label_ranking_avp(check, func): check(func) def test_lrap_error_raised(): check_lrap_error_raised(label_ranking_average_precision_score) @pytest.mark.parametrize("n_samples", (1, 2, 8, 20)) @pytest.mark.parametrize("n_classes", (2, 5, 10)) @pytest.mark.parametrize("random_state", range(1)) def test_alternative_lrap_implementation(n_samples, n_classes, random_state): check_alternative_lrap_implementation( label_ranking_average_precision_score, n_classes, n_samples, random_state ) def test_lrap_sample_weighting_zero_labels(): # Degenerate sample labeling (e.g., zero labels for a sample) is a valid # special case for lrap (the sample is considered to achieve perfect # precision), but this case is not tested in test_common. # For these test samples, the APs are 0.5, 0.75, and 1.0 (default for zero # labels). y_true = np.array([[1, 0, 0, 0], [1, 0, 0, 1], [0, 0, 0, 0]], dtype=bool) y_score = np.array( [[0.3, 0.4, 0.2, 0.1], [0.1, 0.2, 0.3, 0.4], [0.4, 0.3, 0.2, 0.1]] ) samplewise_lraps = np.array([0.5, 0.75, 1.0]) sample_weight = np.array([1.0, 1.0, 0.0]) assert_almost_equal( label_ranking_average_precision_score( y_true, y_score, sample_weight=sample_weight ), np.sum(sample_weight * samplewise_lraps) / np.sum(sample_weight), ) def test_coverage_error(): # Toy case assert_almost_equal(coverage_error([[0, 1]], [[0.25, 0.75]]), 1) assert_almost_equal(coverage_error([[0, 1]], [[0.75, 0.25]]), 2) assert_almost_equal(coverage_error([[1, 1]], [[0.75, 0.25]]), 2) assert_almost_equal(coverage_error([[0, 0]], [[0.75, 0.25]]), 0) assert_almost_equal(coverage_error([[0, 0, 0]], [[0.25, 0.5, 0.75]]), 0) assert_almost_equal(coverage_error([[0, 0, 1]], [[0.25, 0.5, 0.75]]), 1) assert_almost_equal(coverage_error([[0, 1, 0]], [[0.25, 0.5, 0.75]]), 2) assert_almost_equal(coverage_error([[0, 1, 1]], [[0.25, 0.5, 0.75]]), 2) assert_almost_equal(coverage_error([[1, 0, 0]], [[0.25, 0.5, 0.75]]), 3) assert_almost_equal(coverage_error([[1, 0, 1]], [[0.25, 0.5, 0.75]]), 3) assert_almost_equal(coverage_error([[1, 1, 0]], [[0.25, 0.5, 0.75]]), 3) assert_almost_equal(coverage_error([[1, 1, 1]], [[0.25, 0.5, 0.75]]), 3) assert_almost_equal(coverage_error([[0, 0, 0]], [[0.75, 0.5, 0.25]]), 0) assert_almost_equal(coverage_error([[0, 0, 1]], [[0.75, 0.5, 0.25]]), 3) assert_almost_equal(coverage_error([[0, 1, 0]], [[0.75, 0.5, 0.25]]), 2) assert_almost_equal(coverage_error([[0, 1, 1]], [[0.75, 0.5, 0.25]]), 3) assert_almost_equal(coverage_error([[1, 0, 0]], [[0.75, 0.5, 0.25]]), 1) assert_almost_equal(coverage_error([[1, 0, 1]], [[0.75, 0.5, 0.25]]), 3) assert_almost_equal(coverage_error([[1, 1, 0]], [[0.75, 0.5, 0.25]]), 2) assert_almost_equal(coverage_error([[1, 1, 1]], [[0.75, 0.5, 0.25]]), 3) assert_almost_equal(coverage_error([[0, 0, 0]], [[0.5, 0.75, 0.25]]), 0) assert_almost_equal(coverage_error([[0, 0, 1]], [[0.5, 0.75, 0.25]]), 3) assert_almost_equal(coverage_error([[0, 1, 0]], [[0.5, 0.75, 0.25]]), 1) assert_almost_equal(coverage_error([[0, 1, 1]], [[0.5, 0.75, 0.25]]), 3) assert_almost_equal(coverage_error([[1, 0, 0]], [[0.5, 0.75, 0.25]]), 2) assert_almost_equal(coverage_error([[1, 0, 1]], [[0.5, 0.75, 0.25]]), 3) assert_almost_equal(coverage_error([[1, 1, 0]], [[0.5, 0.75, 0.25]]), 2) assert_almost_equal(coverage_error([[1, 1, 1]], [[0.5, 0.75, 0.25]]), 3) # Non trivial case assert_almost_equal( coverage_error([[0, 1, 0], [1, 1, 0]], [[0.1, 10.0, -3], [0, 1, 3]]), (1 + 3) / 2.0, ) assert_almost_equal( coverage_error( [[0, 1, 0], [1, 1, 0], [0, 1, 1]], [[0.1, 10, -3], [0, 1, 3], [0, 2, 0]] ), (1 + 3 + 3) / 3.0, ) assert_almost_equal( coverage_error( [[0, 1, 0], [1, 1, 0], [0, 1, 1]], [[0.1, 10, -3], [3, 1, 3], [0, 2, 0]] ), (1 + 3 + 3) / 3.0, ) def test_coverage_tie_handling(): assert_almost_equal(coverage_error([[0, 0]], [[0.5, 0.5]]), 0) assert_almost_equal(coverage_error([[1, 0]], [[0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[0, 1]], [[0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[1, 1]], [[0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[0, 0, 0]], [[0.25, 0.5, 0.5]]), 0) assert_almost_equal(coverage_error([[0, 0, 1]], [[0.25, 0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[0, 1, 0]], [[0.25, 0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[0, 1, 1]], [[0.25, 0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[1, 0, 0]], [[0.25, 0.5, 0.5]]), 3) assert_almost_equal(coverage_error([[1, 0, 1]], [[0.25, 0.5, 0.5]]), 3) assert_almost_equal(coverage_error([[1, 1, 0]], [[0.25, 0.5, 0.5]]), 3) assert_almost_equal(coverage_error([[1, 1, 1]], [[0.25, 0.5, 0.5]]), 3) @pytest.mark.parametrize( "y_true, y_score", [ ([1, 0, 1], [0.25, 0.5, 0.5]), ([1, 0, 1], [[0.25, 0.5, 0.5]]), ([[1, 0, 1]], [0.25, 0.5, 0.5]), ], ) def test_coverage_1d_error_message(y_true, y_score): # Non-regression test for: # https://github.com/scikit-learn/scikit-learn/issues/23368 with pytest.raises(ValueError, match=r"Expected 2D array, got 1D array instead"): coverage_error(y_true, y_score) def test_label_ranking_loss(): assert_almost_equal(label_ranking_loss([[0, 1]], [[0.25, 0.75]]), 0) assert_almost_equal(label_ranking_loss([[0, 1]], [[0.75, 0.25]]), 1) assert_almost_equal(label_ranking_loss([[0, 0, 1]], [[0.25, 0.5, 0.75]]), 0) assert_almost_equal(label_ranking_loss([[0, 1, 0]], [[0.25, 0.5, 0.75]]), 1 / 2) assert_almost_equal(label_ranking_loss([[0, 1, 1]], [[0.25, 0.5, 0.75]]), 0) assert_almost_equal(label_ranking_loss([[1, 0, 0]], [[0.25, 0.5, 0.75]]), 2 / 2) assert_almost_equal(label_ranking_loss([[1, 0, 1]], [[0.25, 0.5, 0.75]]), 1 / 2) assert_almost_equal(label_ranking_loss([[1, 1, 0]], [[0.25, 0.5, 0.75]]), 2 / 2) # Undefined metrics - the ranking doesn't matter assert_almost_equal(label_ranking_loss([[0, 0]], [[0.75, 0.25]]), 0) assert_almost_equal(label_ranking_loss([[1, 1]], [[0.75, 0.25]]), 0) assert_almost_equal(label_ranking_loss([[0, 0]], [[0.5, 0.5]]), 0) assert_almost_equal(label_ranking_loss([[1, 1]], [[0.5, 0.5]]), 0) assert_almost_equal(label_ranking_loss([[0, 0, 0]], [[0.5, 0.75, 0.25]]), 0) assert_almost_equal(label_ranking_loss([[1, 1, 1]], [[0.5, 0.75, 0.25]]), 0) assert_almost_equal(label_ranking_loss([[0, 0, 0]], [[0.25, 0.5, 0.5]]), 0) assert_almost_equal(label_ranking_loss([[1, 1, 1]], [[0.25, 0.5, 0.5]]), 0) # Non trivial case assert_almost_equal( label_ranking_loss([[0, 1, 0], [1, 1, 0]], [[0.1, 10.0, -3], [0, 1, 3]]), (0 + 2 / 2) / 2.0, ) assert_almost_equal( label_ranking_loss( [[0, 1, 0], [1, 1, 0], [0, 1, 1]], [[0.1, 10, -3], [0, 1, 3], [0, 2, 0]] ), (0 + 2 / 2 + 1 / 2) / 3.0, ) assert_almost_equal( label_ranking_loss( [[0, 1, 0], [1, 1, 0], [0, 1, 1]], [[0.1, 10, -3], [3, 1, 3], [0, 2, 0]] ), (0 + 2 / 2 + 1 / 2) / 3.0, ) @pytest.mark.parametrize("csr_container", CSR_CONTAINERS) def test_label_ranking_loss_sparse(csr_container): assert_almost_equal( label_ranking_loss( csr_container(np.array([[0, 1, 0], [1, 1, 0]])), [[0.1, 10, -3], [3, 1, 3]] ), (0 + 2 / 2) / 2.0, ) def test_ranking_appropriate_input_shape(): # Check that y_true.shape != y_score.shape raise the proper exception with pytest.raises(ValueError): label_ranking_loss([[0, 1], [0, 1]], [0, 1]) with pytest.raises(ValueError): label_ranking_loss([[0, 1], [0, 1]], [[0, 1]]) with pytest.raises(ValueError): label_ranking_loss([[0, 1], [0, 1]], [[0], [1]]) with pytest.raises(ValueError): label_ranking_loss([[0, 1]], [[0, 1], [0, 1]]) with pytest.raises(ValueError): label_ranking_loss([[0], [1]], [[0, 1], [0, 1]]) with pytest.raises(ValueError): label_ranking_loss([[0, 1], [0, 1]], [[0], [1]]) def test_ranking_loss_ties_handling(): # Tie handling assert_almost_equal(label_ranking_loss([[1, 0]], [[0.5, 0.5]]), 1) assert_almost_equal(label_ranking_loss([[0, 1]], [[0.5, 0.5]]), 1) assert_almost_equal(label_ranking_loss([[0, 0, 1]], [[0.25, 0.5, 0.5]]), 1 / 2) assert_almost_equal(label_ranking_loss([[0, 1, 0]], [[0.25, 0.5, 0.5]]), 1 / 2) assert_almost_equal(label_ranking_loss([[0, 1, 1]], [[0.25, 0.5, 0.5]]), 0) assert_almost_equal(label_ranking_loss([[1, 0, 0]], [[0.25, 0.5, 0.5]]), 1) assert_almost_equal(label_ranking_loss([[1, 0, 1]], [[0.25, 0.5, 0.5]]), 1) assert_almost_equal(label_ranking_loss([[1, 1, 0]], [[0.25, 0.5, 0.5]]), 1) def test_dcg_score(): _, y_true = make_multilabel_classification(random_state=0, n_classes=10) y_score = -y_true + 1 _test_dcg_score_for(y_true, y_score) y_true, y_score = np.random.RandomState(0).random_sample((2, 100, 10)) _test_dcg_score_for(y_true, y_score) def _test_dcg_score_for(y_true, y_score): discount = np.log2(np.arange(y_true.shape[1]) + 2) ideal = _dcg_sample_scores(y_true, y_true) score = _dcg_sample_scores(y_true, y_score) assert (score <= ideal).all() assert (_dcg_sample_scores(y_true, y_true, k=5) <= ideal).all() assert ideal.shape == (y_true.shape[0],) assert score.shape == (y_true.shape[0],) assert ideal == pytest.approx((np.sort(y_true)[:, ::-1] / discount).sum(axis=1)) def test_dcg_ties(): y_true = np.asarray([np.arange(5)]) y_score = np.zeros(y_true.shape) dcg = _dcg_sample_scores(y_true, y_score) dcg_ignore_ties = _dcg_sample_scores(y_true, y_score, ignore_ties=True) discounts = 1 / np.log2(np.arange(2, 7)) assert dcg == pytest.approx([discounts.sum() * y_true.mean()]) assert dcg_ignore_ties == pytest.approx([(discounts * y_true[:, ::-1]).sum()]) y_score[0, 3:] = 1 dcg = _dcg_sample_scores(y_true, y_score) dcg_ignore_ties = _dcg_sample_scores(y_true, y_score, ignore_ties=True) assert dcg_ignore_ties == pytest.approx([(discounts * y_true[:, ::-1]).sum()]) assert dcg == pytest.approx( [ discounts[:2].sum() * y_true[0, 3:].mean() + discounts[2:].sum() * y_true[0, :3].mean() ] ) def test_ndcg_ignore_ties_with_k(): a = np.arange(12).reshape((2, 6)) assert ndcg_score(a, a, k=3, ignore_ties=True) == pytest.approx( ndcg_score(a, a, k=3, ignore_ties=True) ) def test_ndcg_negative_ndarray_error(): """Check `ndcg_score` exception when `y_true` contains negative values.""" y_true = np.array([[-0.89, -0.53, -0.47, 0.39, 0.56]]) y_score = np.array([[0.07, 0.31, 0.75, 0.33, 0.27]]) expected_message = "ndcg_score should not be used on negative y_true values" with pytest.raises(ValueError, match=expected_message): ndcg_score(y_true, y_score) def test_ndcg_invariant(): y_true = np.arange(70).reshape(7, 10) y_score = y_true + np.random.RandomState(0).uniform(-0.2, 0.2, size=y_true.shape) ndcg = ndcg_score(y_true, y_score) ndcg_no_ties = ndcg_score(y_true, y_score, ignore_ties=True) assert ndcg == pytest.approx(ndcg_no_ties) assert ndcg == pytest.approx(1.0) y_score += 1000 assert ndcg_score(y_true, y_score) == pytest.approx(1.0) @pytest.mark.parametrize("ignore_ties", [True, False]) def test_ndcg_toy_examples(ignore_ties): y_true = 3 * np.eye(7)[:5] y_score = np.tile(np.arange(6, -1, -1), (5, 1)) y_score_noisy = y_score + np.random.RandomState(0).uniform( -0.2, 0.2, size=y_score.shape ) assert _dcg_sample_scores( y_true, y_score, ignore_ties=ignore_ties ) == pytest.approx(3 / np.log2(np.arange(2, 7))) assert _dcg_sample_scores( y_true, y_score_noisy, ignore_ties=ignore_ties ) == pytest.approx(3 / np.log2(np.arange(2, 7))) assert _ndcg_sample_scores( y_true, y_score, ignore_ties=ignore_ties ) == pytest.approx(1 / np.log2(np.arange(2, 7))) assert _dcg_sample_scores( y_true, y_score, log_base=10, ignore_ties=ignore_ties ) == pytest.approx(3 / np.log10(np.arange(2, 7))) assert ndcg_score(y_true, y_score, ignore_ties=ignore_ties) == pytest.approx( (1 / np.log2(np.arange(2, 7))).mean() ) assert dcg_score(y_true, y_score, ignore_ties=ignore_ties) == pytest.approx( (3 / np.log2(np.arange(2, 7))).mean() ) y_true = 3 * np.ones((5, 7)) expected_dcg_score = (3 / np.log2(np.arange(2, 9))).sum() assert _dcg_sample_scores( y_true, y_score, ignore_ties=ignore_ties ) == pytest.approx(expected_dcg_score * np.ones(5)) assert _ndcg_sample_scores( y_true, y_score, ignore_ties=ignore_ties ) == pytest.approx(np.ones(5)) assert dcg_score(y_true, y_score, ignore_ties=ignore_ties) == pytest.approx( expected_dcg_score ) assert ndcg_score(y_true, y_score, ignore_ties=ignore_ties) == pytest.approx(1.0) def test_ndcg_error_single_document(): """Check that we raise an informative error message when trying to compute NDCG with a single document.""" err_msg = ( "Computing NDCG is only meaningful when there is more than 1 document. " "Got 1 instead." ) with pytest.raises(ValueError, match=err_msg): ndcg_score([[1]], [[1]]) def test_ndcg_score(): _, y_true = make_multilabel_classification(random_state=0, n_classes=10) y_score = -y_true + 1 _test_ndcg_score_for(y_true, y_score) y_true, y_score = np.random.RandomState(0).random_sample((2, 100, 10)) _test_ndcg_score_for(y_true, y_score) def _test_ndcg_score_for(y_true, y_score): ideal = _ndcg_sample_scores(y_true, y_true) score = _ndcg_sample_scores(y_true, y_score) assert (score <= ideal).all() all_zero = (y_true == 0).all(axis=1) assert ideal[~all_zero] == pytest.approx(np.ones((~all_zero).sum())) assert ideal[all_zero] == pytest.approx(np.zeros(all_zero.sum())) assert score[~all_zero] == pytest.approx( _dcg_sample_scores(y_true, y_score)[~all_zero] / _dcg_sample_scores(y_true, y_true)[~all_zero] ) assert score[all_zero] == pytest.approx(np.zeros(all_zero.sum())) assert ideal.shape == (y_true.shape[0],) assert score.shape == (y_true.shape[0],) def test_partial_roc_auc_score(): # Check `roc_auc_score` for max_fpr != `None` y_true = np.array([0, 0, 1, 1]) assert roc_auc_score(y_true, y_true, max_fpr=1) == 1 assert roc_auc_score(y_true, y_true, max_fpr=0.001) == 1 with pytest.raises(ValueError): assert roc_auc_score(y_true, y_true, max_fpr=-0.1) with pytest.raises(ValueError): assert roc_auc_score(y_true, y_true, max_fpr=1.1) with pytest.raises(ValueError): assert roc_auc_score(y_true, y_true, max_fpr=0) y_scores = np.array([0.1, 0, 0.1, 0.01]) roc_auc_with_max_fpr_one = roc_auc_score(y_true, y_scores, max_fpr=1) unconstrained_roc_auc = roc_auc_score(y_true, y_scores) assert roc_auc_with_max_fpr_one == unconstrained_roc_auc assert roc_auc_score(y_true, y_scores, max_fpr=0.3) == 0.5 y_true, y_pred, _ = make_prediction(binary=True) for max_fpr in np.linspace(1e-4, 1, 5): assert_almost_equal( roc_auc_score(y_true, y_pred, max_fpr=max_fpr), _partial_roc_auc_score(y_true, y_pred, max_fpr), ) @pytest.mark.parametrize( "y_true, k, true_score", [ ([0, 1, 2, 3], 1, 0.25), ([0, 1, 2, 3], 2, 0.5), ([0, 1, 2, 3], 3, 0.75), ], ) def test_top_k_accuracy_score(y_true, k, true_score): y_score = np.array( [ [0.4, 0.3, 0.2, 0.1], [0.1, 0.3, 0.4, 0.2], [0.4, 0.1, 0.2, 0.3], [0.3, 0.2, 0.4, 0.1], ] ) score = top_k_accuracy_score(y_true, y_score, k=k) assert score == pytest.approx(true_score) @pytest.mark.parametrize( "y_score, k, true_score", [ (np.array([-1, -1, 1, 1]), 1, 1), (np.array([-1, 1, -1, 1]), 1, 0.5), (np.array([-1, 1, -1, 1]), 2, 1), (np.array([0.2, 0.2, 0.7, 0.7]), 1, 1), (np.array([0.2, 0.7, 0.2, 0.7]), 1, 0.5), (np.array([0.2, 0.7, 0.2, 0.7]), 2, 1), ], ) def test_top_k_accuracy_score_binary(y_score, k, true_score): y_true = [0, 0, 1, 1] threshold = 0.5 if y_score.min() >= 0 and y_score.max() <= 1 else 0 y_pred = (y_score > threshold).astype(np.int64) if k == 1 else y_true score = top_k_accuracy_score(y_true, y_score, k=k) score_acc = accuracy_score(y_true, y_pred) assert score == score_acc == pytest.approx(true_score) @pytest.mark.parametrize( "y_true, true_score, labels", [ (np.array([0, 1, 1, 2]), 0.75, [0, 1, 2, 3]), (np.array([0, 1, 1, 1]), 0.5, [0, 1, 2, 3]), (np.array([1, 1, 1, 1]), 0.5, [0, 1, 2, 3]), (np.array(["a", "e", "e", "a"]), 0.75, ["a", "b", "d", "e"]), ], ) @pytest.mark.parametrize("labels_as_ndarray", [True, False]) def test_top_k_accuracy_score_multiclass_with_labels( y_true, true_score, labels, labels_as_ndarray ): """Test when labels and y_score are multiclass.""" if labels_as_ndarray: labels = np.asarray(labels) y_score = np.array( [ [0.4, 0.3, 0.2, 0.1], [0.1, 0.3, 0.4, 0.2], [0.4, 0.1, 0.2, 0.3], [0.3, 0.2, 0.4, 0.1], ] ) score = top_k_accuracy_score(y_true, y_score, k=2, labels=labels) assert score == pytest.approx(true_score) def test_top_k_accuracy_score_increasing(): # Make sure increasing k leads to a higher score X, y = datasets.make_classification( n_classes=10, n_samples=1000, n_informative=10, random_state=0 ) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) clf = LogisticRegression(random_state=0) clf.fit(X_train, y_train) for X, y in zip((X_train, X_test), (y_train, y_test)): scores = [ top_k_accuracy_score(y, clf.predict_proba(X), k=k) for k in range(2, 10) ] assert np.all(np.diff(scores) > 0) @pytest.mark.parametrize( "y_true, k, true_score", [ ([0, 1, 2, 3], 1, 0.25), ([0, 1, 2, 3], 2, 0.5), ([0, 1, 2, 3], 3, 1), ], ) def test_top_k_accuracy_score_ties(y_true, k, true_score): # Make sure highest indices labels are chosen first in case of ties y_score = np.array( [ [5, 5, 7, 0], [1, 5, 5, 5], [0, 0, 3, 3], [1, 1, 1, 1], ] ) assert top_k_accuracy_score(y_true, y_score, k=k) == pytest.approx(true_score) @pytest.mark.parametrize( "y_true, k", [ ([0, 1, 2, 3], 4), ([0, 1, 2, 3], 5), ], ) def test_top_k_accuracy_score_warning(y_true, k): y_score = np.array( [ [0.4, 0.3, 0.2, 0.1], [0.1, 0.4, 0.3, 0.2], [0.2, 0.1, 0.4, 0.3], [0.3, 0.2, 0.1, 0.4], ] ) expected_message = ( r"'k' \(\d+\) greater than or equal to 'n_classes' \(\d+\) will result in a " "perfect score and is therefore meaningless." ) with pytest.warns(UndefinedMetricWarning, match=expected_message): score = top_k_accuracy_score(y_true, y_score, k=k) assert score == 1 @pytest.mark.parametrize( "y_true, y_score, labels, msg", [ ( [0, 0.57, 1, 2], [ [0.2, 0.1, 0.7], [0.4, 0.3, 0.3], [0.3, 0.4, 0.3], [0.4, 0.5, 0.1], ], None, "y type must be 'binary' or 'multiclass', got 'continuous'", ), ( [0, 1, 2, 3], [ [0.2, 0.1, 0.7], [0.4, 0.3, 0.3], [0.3, 0.4, 0.3], [0.4, 0.5, 0.1], ], None, r"Number of classes in 'y_true' \(4\) not equal to the number of " r"classes in 'y_score' \(3\).", ), ( ["c", "c", "a", "b"], [ [0.2, 0.1, 0.7], [0.4, 0.3, 0.3], [0.3, 0.4, 0.3], [0.4, 0.5, 0.1], ], ["a", "b", "c", "c"], "Parameter 'labels' must be unique.", ), ( ["c", "c", "a", "b"], [ [0.2, 0.1, 0.7], [0.4, 0.3, 0.3], [0.3, 0.4, 0.3], [0.4, 0.5, 0.1], ], ["a", "c", "b"], "Parameter 'labels' must be ordered.", ), ( [0, 0, 1, 2], [ [0.2, 0.1, 0.7], [0.4, 0.3, 0.3], [0.3, 0.4, 0.3], [0.4, 0.5, 0.1], ], [0, 1, 2, 3], r"Number of given labels \(4\) not equal to the number of classes in " r"'y_score' \(3\).", ), ( [0, 0, 1, 2], [ [0.2, 0.1, 0.7], [0.4, 0.3, 0.3], [0.3, 0.4, 0.3], [0.4, 0.5, 0.1], ], [0, 1, 3], "'y_true' contains labels not in parameter 'labels'.", ), ( [0, 1], [[0.5, 0.2, 0.2], [0.3, 0.4, 0.2]], None, ( "`y_true` is binary while y_score is 2d with 3 classes. If" " `y_true` does not contain all the labels, `labels` must be provided" ), ), ], ) def test_top_k_accuracy_score_error(y_true, y_score, labels, msg): with pytest.raises(ValueError, match=msg): top_k_accuracy_score(y_true, y_score, k=2, labels=labels) @pytest.mark.parametrize("csr_container", CSR_CONTAINERS) def test_label_ranking_avg_precision_score_should_allow_csr_matrix_for_y_true_input( csr_container, ): # Test that label_ranking_avg_precision_score accept sparse y_true. # Non-regression test for #22575 y_true = csr_container([[1, 0, 0], [0, 0, 1]]) y_score = np.array([[0.5, 0.9, 0.6], [0, 0, 1]]) result = label_ranking_average_precision_score(y_true, y_score) assert result == pytest.approx(2 / 3) @pytest.mark.parametrize( "metric", [average_precision_score, det_curve, precision_recall_curve, roc_curve] ) @pytest.mark.parametrize( "classes", [(False, True), (0, 1), (0.0, 1.0), ("zero", "one")] ) def test_ranking_metric_pos_label_types(metric, classes): """Check that the metric works with different types of `pos_label`. We can expect `pos_label` to be a bool, an integer, a float, a string. No error should be raised for those types. """ rng = np.random.RandomState(42) n_samples, pos_label = 10, classes[-1] y_true = rng.choice(classes, size=n_samples, replace=True) y_proba = rng.rand(n_samples) result = metric(y_true, y_proba, pos_label=pos_label) if isinstance(result, float): assert not np.isnan(result) else: metric_1, metric_2, thresholds = result assert not np.isnan(metric_1).any() assert not np.isnan(metric_2).any() assert not np.isnan(thresholds).any() def test_roc_curve_with_probablity_estimates(global_random_seed): """Check that thresholds do not exceed 1.0 when `y_score` is a probability estimate. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/26193 """ rng = np.random.RandomState(global_random_seed) y_true = rng.randint(0, 2, size=10) y_score = rng.rand(10) _, _, thresholds = roc_curve(y_true, y_score) assert np.isinf(thresholds[0]) # TODO(1.7): remove def test_precision_recall_curve_deprecation_warning(): """Check the message for future deprecation.""" # Check precision_recall_curve function y_true, _, y_score = make_prediction(binary=True) warn_msg = "probas_pred was deprecated in version 1.5" with pytest.warns(FutureWarning, match=warn_msg): precision_recall_curve( y_true, probas_pred=y_score, ) error_msg = "`probas_pred` and `y_score` cannot be both specified" with pytest.raises(ValueError, match=error_msg): precision_recall_curve( y_true, probas_pred=y_score, y_score=y_score, )
Memory