from __future__ import annotations import json import logging import os from fnmatch import fnmatch from pathlib import Path from typing import Any, Callable import huggingface_hub import torch from torch import nn from transformers import AutoConfig, AutoModel, AutoTokenizer, MT5Config, T5Config from transformers.utils.import_utils import is_peft_available from transformers.utils.peft_utils import find_adapter_config_file logger = logging.getLogger(__name__) def _save_pretrained_wrapper(_save_pretrained_fn: Callable, subfolder: str) -> Callable[..., None]: def wrapper(save_directory: str | Path, **kwargs) -> None: os.makedirs(Path(save_directory) / subfolder, exist_ok=True) return _save_pretrained_fn(Path(save_directory) / subfolder, **kwargs) return wrapper class Transformer(nn.Module): """Hugging Face AutoModel to generate token embeddings. Loads the correct class, e.g. BERT / RoBERTa etc. Args: model_name_or_path: Hugging Face models name (https://huggingface.co/models) max_seq_length: Truncate any inputs longer than max_seq_length model_args: Keyword arguments passed to the Hugging Face Transformers model tokenizer_args: Keyword arguments passed to the Hugging Face Transformers tokenizer config_args: Keyword arguments passed to the Hugging Face Transformers config cache_dir: Cache dir for Hugging Face Transformers to store/load models do_lower_case: If true, lowercases the input (independent if the model is cased or not) tokenizer_name_or_path: Name or path of the tokenizer. When None, then model_name_or_path is used backend: Backend used for model inference. Can be `torch`, `onnx`, or `openvino`. Default is `torch`. """ save_in_root: bool = True def __init__( self, model_name_or_path: str, max_seq_length: int | None = None, model_args: dict[str, Any] | None = None, tokenizer_args: dict[str, Any] | None = None, config_args: dict[str, Any] | None = None, cache_dir: str | None = None, do_lower_case: bool = False, tokenizer_name_or_path: str = None, backend: str = "torch", ) -> None: super().__init__() self.config_keys = ["max_seq_length", "do_lower_case"] self.do_lower_case = do_lower_case self.backend = backend if model_args is None: model_args = {} if tokenizer_args is None: tokenizer_args = {} if config_args is None: config_args = {} config = self._load_config(model_name_or_path, cache_dir, backend, config_args) self._load_model(model_name_or_path, config, cache_dir, backend, **model_args) if max_seq_length is not None and "model_max_length" not in tokenizer_args: tokenizer_args["model_max_length"] = max_seq_length self.tokenizer = AutoTokenizer.from_pretrained( tokenizer_name_or_path if tokenizer_name_or_path is not None else model_name_or_path, cache_dir=cache_dir, **tokenizer_args, ) # No max_seq_length set. Try to infer from model if max_seq_length is None: if ( hasattr(self.auto_model, "config") and hasattr(self.auto_model.config, "max_position_embeddings") and hasattr(self.tokenizer, "model_max_length") ): max_seq_length = min(self.auto_model.config.max_position_embeddings, self.tokenizer.model_max_length) self.max_seq_length = max_seq_length if tokenizer_name_or_path is not None: self.auto_model.config.tokenizer_class = self.tokenizer.__class__.__name__ def _load_config(self, model_name_or_path: str, cache_dir: str | None, backend: str, config_args: dict[str, Any]): """Loads the configuration of a model""" if ( find_adapter_config_file( model_name_or_path, token=config_args.get("token"), revision=config_args.get("revision"), local_files_only=config_args.get("local_files_only", False), ) is not None ): if not is_peft_available(): raise Exception( "Loading a PEFT model requires installing the `peft` package. You can install it via `pip install peft`." ) if backend != "torch": # TODO: Consider following these steps automatically so we can load PEFT models with other backends raise ValueError( "PEFT models can currently only be loaded with the `torch` backend. " 'To use other backends, load the model with `backend="torch"`, call `model[0].auto_model.merge_and_unload()`, ' "save that model with `model.save_pretrained()` and then load the model with the desired backend." ) from peft import PeftConfig return PeftConfig.from_pretrained(model_name_or_path, **config_args, cache_dir=cache_dir) return AutoConfig.from_pretrained(model_name_or_path, **config_args, cache_dir=cache_dir) def _load_model(self, model_name_or_path, config, cache_dir, backend, **model_args) -> None: """Loads the transformer model""" if backend == "torch": if isinstance(config, T5Config): self._load_t5_model(model_name_or_path, config, cache_dir, **model_args) elif isinstance(config, MT5Config): self._load_mt5_model(model_name_or_path, config, cache_dir, **model_args) else: self.auto_model = AutoModel.from_pretrained( model_name_or_path, config=config, cache_dir=cache_dir, **model_args ) self._load_peft_model(model_name_or_path, config, cache_dir, **model_args) elif backend == "onnx": self._load_onnx_model(model_name_or_path, config, cache_dir, **model_args) elif backend == "openvino": self._load_openvino_model(model_name_or_path, config, cache_dir, **model_args) else: raise ValueError(f"Unsupported backend '{backend}'. `backend` should be `torch`, `onnx`, or `openvino`.") def _load_peft_model(self, model_name_or_path, config, cache_dir, **model_args) -> None: if is_peft_available(): from peft import PeftConfig, PeftModel if isinstance(config, PeftConfig): self.auto_model = PeftModel.from_pretrained( self.auto_model, model_name_or_path, config=config, cache_dir=cache_dir, **model_args ) def _load_openvino_model(self, model_name_or_path, config, cache_dir, **model_args) -> None: if isinstance(config, T5Config) or isinstance(config, MT5Config): raise ValueError("T5 models are not yet supported by the OpenVINO backend.") try: from optimum.intel import OVModelForFeatureExtraction from optimum.intel.openvino import OV_XML_FILE_NAME except ModuleNotFoundError: raise Exception( "Using the OpenVINO backend requires installing Optimum and OpenVINO. " "You can install them with pip: `pip install optimum[openvino]`." ) load_path = Path(model_name_or_path) is_local = load_path.exists() backend_name = "OpenVINO" target_file_glob = "openvino*.xml" # Determine whether the model should be exported or whether we can load it directly export, model_args = self._backend_should_export( load_path, is_local, model_args, OV_XML_FILE_NAME, target_file_glob, backend_name ) # If we're exporting, then there's no need for a file_name to load the model from if export: model_args.pop("file_name", None) # ov_config can be either a dictionary, or point to a json file with an OpenVINO config if "ov_config" in model_args: ov_config = model_args["ov_config"] if not isinstance(ov_config, dict): if not Path(ov_config).exists(): raise ValueError( "ov_config should be a dictionary or a path to a .json file containing an OpenVINO config" ) with open(ov_config, encoding="utf-8") as f: model_args["ov_config"] = json.load(f) else: model_args["ov_config"] = {} # Either load an exported model, or export the model to OpenVINO self.auto_model: OVModelForFeatureExtraction = OVModelForFeatureExtraction.from_pretrained( model_name_or_path, config=config, cache_dir=cache_dir, export=export, **model_args, ) # Wrap the save_pretrained method to save the model in the correct subfolder self.auto_model._save_pretrained = _save_pretrained_wrapper(self.auto_model._save_pretrained, self.backend) # Warn the user to save the model if they haven't already if export: self._backend_warn_to_save(model_name_or_path, is_local, backend_name) def _load_onnx_model(self, model_name_or_path, config, cache_dir, **model_args) -> None: try: import onnxruntime as ort from optimum.onnxruntime import ONNX_WEIGHTS_NAME, ORTModelForFeatureExtraction except ModuleNotFoundError: raise Exception( "Using the ONNX backend requires installing Optimum and ONNX Runtime. " "You can install them with pip: `pip install optimum[onnxruntime]` " "or `pip install optimum[onnxruntime-gpu]`" ) # Default to the highest priority available provider if not specified # E.g. Tensorrt > CUDA > CPU model_args["provider"] = model_args.pop("provider", ort.get_available_providers()[0]) load_path = Path(model_name_or_path) is_local = load_path.exists() backend_name = "ONNX" target_file_glob = "*.onnx" # Determine whether the model should be exported or whether we can load it directly export, model_args = self._backend_should_export( load_path, is_local, model_args, ONNX_WEIGHTS_NAME, target_file_glob, backend_name ) # If we're exporting, then there's no need for a file_name to load the model from if export: model_args.pop("file_name", None) # Either load an exported model, or export the model to ONNX self.auto_model: ORTModelForFeatureExtraction = ORTModelForFeatureExtraction.from_pretrained( model_name_or_path, config=config, cache_dir=cache_dir, export=export, **model_args, ) # Wrap the save_pretrained method to save the model in the correct subfolder self.auto_model._save_pretrained = _save_pretrained_wrapper(self.auto_model._save_pretrained, self.backend) # Warn the user to save the model if they haven't already if export: self._backend_warn_to_save(model_name_or_path, is_local, backend_name) def _backend_should_export( self, load_path: Path, is_local: bool, model_args: dict[str, Any], target_file_name: str, target_file_glob: str, backend_name: str, ) -> tuple[bool, dict[str, Any]]: """ Determines whether the model should be exported to the backend, or if it can be loaded directly. Also update the `file_name` and `subfolder` model_args if necessary. These are the cases: 1. If export is set in model_args, just return export 2. If `<subfolder>/<file_name>` exists; set export to False 3. If `<backend>/<file_name>` exists; set export to False and set subfolder to the backend (e.g. "onnx") 4. If `<file_name>` contains a folder, add those folders to the subfolder and set the file_name to the last part We will warn if: 1. The expected file does not exist in the model directory given the optional file_name and subfolder. If there are valid files for this backend, but they're don't align with file_name, then we give a useful warning. 2. Multiple files are found in the model directory that match the target file name and the user did not specify the desired file name via `model_kwargs={"file_name": "<file_name>"}` Args: load_path: The model repository or directory, as a Path instance is_local: Whether the model is local or remote, i.e. whether load_path is a local directory model_args: The model_args dictionary. Notable keys are "export", "file_name", and "subfolder" target_file_name: The expected file name in the model directory, e.g. "model.onnx" or "openvino_model.xml" target_file_glob: The glob pattern to match the target file name, e.g. "*.onnx" or "openvino*.xml" backend_name: The human-readable name of the backend for use in warnings, e.g. "ONNX" or "OpenVINO" Returns: Tuple[bool, dict[str, Any]]: A tuple of the export boolean and the updated model_args dictionary. """ export = model_args.pop("export", None) if export: return export, model_args file_name = model_args.get("file_name", target_file_name) subfolder = model_args.get("subfolder", None) primary_full_path = Path(subfolder, file_name).as_posix() if subfolder else Path(file_name).as_posix() secondary_full_path = ( Path(subfolder, self.backend, file_name).as_posix() if subfolder else Path(self.backend, file_name).as_posix() ) glob_pattern = f"{subfolder}/**/{target_file_glob}" if subfolder else f"**/{target_file_glob}" # Get the list of files in the model directory that match the target file name if is_local: model_file_names = [path.relative_to(load_path).as_posix() for path in load_path.glob(glob_pattern)] else: all_files = huggingface_hub.list_repo_files( load_path.as_posix(), repo_type="model", revision=model_args.get("revision", None), token=model_args.get("token", None), ) model_file_names = [fname for fname in all_files if fnmatch(fname, glob_pattern)] # First check if the expected file exists in the root of the model directory # If it doesn't, check if it exists in the backend subfolder. # If it does, set the subfolder to include the backend model_found = primary_full_path in model_file_names if not model_found and "subfolder" not in model_args: model_found = secondary_full_path in model_file_names if model_found: if len(model_file_names) > 1 and "file_name" not in model_args: logger.warning( f"Multiple {backend_name} files found in {load_path.as_posix()!r}: {model_file_names}, defaulting to {secondary_full_path!r}. " f'Please specify the desired file name via `model_kwargs={{"file_name": "<file_name>"}}`.' ) model_args["subfolder"] = self.backend model_args["file_name"] = file_name if export is None: export = not model_found # If the file_name contains subfolders, set it as the subfolder instead file_name_parts = Path(file_name).parts if len(file_name_parts) > 1: model_args["file_name"] = file_name_parts[-1] model_args["subfolder"] = Path(model_args.get("subfolder", ""), *file_name_parts[:-1]).as_posix() if export: logger.warning( f"No {file_name!r} found in {load_path.as_posix()!r}. Exporting the model to {backend_name}." ) if model_file_names: logger.warning( f"If you intended to load one of the {model_file_names} {backend_name} files, " f'please specify the desired file name via `model_kwargs={{"file_name": "{model_file_names[0]}"}}`.' ) return export, model_args def _backend_warn_to_save(self, model_name_or_path: str, is_local: str, backend_name: str) -> None: to_log = f"Saving the exported {backend_name} model is heavily recommended to avoid having to export it again." if is_local: to_log += f" Do so with `model.save_pretrained({model_name_or_path!r})`." else: to_log += f" Do so with `model.push_to_hub({model_name_or_path!r}, create_pr=True)`." logger.warning(to_log) def _load_t5_model(self, model_name_or_path, config, cache_dir, **model_args) -> None: """Loads the encoder model from T5""" from transformers import T5EncoderModel T5EncoderModel._keys_to_ignore_on_load_unexpected = ["decoder.*"] self.auto_model = T5EncoderModel.from_pretrained( model_name_or_path, config=config, cache_dir=cache_dir, **model_args ) def _load_mt5_model(self, model_name_or_path, config, cache_dir, **model_args) -> None: """Loads the encoder model from T5""" from transformers import MT5EncoderModel MT5EncoderModel._keys_to_ignore_on_load_unexpected = ["decoder.*"] self.auto_model = MT5EncoderModel.from_pretrained( model_name_or_path, config=config, cache_dir=cache_dir, **model_args ) def __repr__(self) -> str: return f"Transformer({self.get_config_dict()}) with Transformer model: {self.auto_model.__class__.__name__} " def forward(self, features: dict[str, torch.Tensor], **kwargs) -> dict[str, torch.Tensor]: """Returns token_embeddings, cls_token""" trans_features = {"input_ids": features["input_ids"], "attention_mask": features["attention_mask"]} if "token_type_ids" in features: trans_features["token_type_ids"] = features["token_type_ids"] output_states = self.auto_model(**trans_features, **kwargs, return_dict=False) output_tokens = output_states[0] # If the AutoModel is wrapped with a PeftModelForFeatureExtraction, then it may have added virtual tokens # We need to extend the attention mask to include these virtual tokens, or the pooling will fail if is_peft_available(): from peft import PeftModelForFeatureExtraction if ( isinstance(self.auto_model, PeftModelForFeatureExtraction) and self.auto_model.active_peft_config.is_prompt_learning ): batch_size = output_tokens.size(0) attention_mask = features["attention_mask"] prefix_attention_mask = torch.ones( batch_size, self.auto_model.active_peft_config.num_virtual_tokens, device=attention_mask.device ) features["attention_mask"] = torch.cat((prefix_attention_mask, attention_mask), dim=1) features["token_embeddings"] = output_tokens if self.auto_model.config.output_hidden_states and len(output_states) > 2: all_layer_idx = 2 # I.e. after last_hidden_states and pooler_output if len(output_states) < 3: # Some models only output last_hidden_states and all_hidden_states all_layer_idx = 1 hidden_states = output_states[all_layer_idx] features["all_layer_embeddings"] = hidden_states return features def get_word_embedding_dimension(self) -> int: return self.auto_model.config.hidden_size def tokenize( self, texts: list[str] | list[dict] | list[tuple[str, str]], padding: str | bool = True ) -> dict[str, torch.Tensor]: """Tokenizes a text and maps tokens to token-ids""" output = {} if isinstance(texts[0], str): to_tokenize = [texts] elif isinstance(texts[0], dict): to_tokenize = [] output["text_keys"] = [] for lookup in texts: text_key, text = next(iter(lookup.items())) to_tokenize.append(text) output["text_keys"].append(text_key) to_tokenize = [to_tokenize] else: batch1, batch2 = [], [] for text_tuple in texts: batch1.append(text_tuple[0]) batch2.append(text_tuple[1]) to_tokenize = [batch1, batch2] # strip to_tokenize = [[str(s).strip() for s in col] for col in to_tokenize] # Lowercase if self.do_lower_case: to_tokenize = [[s.lower() for s in col] for col in to_tokenize] output.update( self.tokenizer( *to_tokenize, padding=padding, truncation="longest_first", return_tensors="pt", max_length=self.max_seq_length, ) ) return output def get_config_dict(self) -> dict[str, Any]: return {key: self.__dict__[key] for key in self.config_keys} def save(self, output_path: str, safe_serialization: bool = True) -> None: self.auto_model.save_pretrained(output_path, safe_serialization=safe_serialization) self.tokenizer.save_pretrained(output_path) with open(os.path.join(output_path, "sentence_bert_config.json"), "w") as fOut: json.dump(self.get_config_dict(), fOut, indent=2) @classmethod def load(cls, input_path: str) -> Transformer: # Old classes used other config names than 'sentence_bert_config.json' for config_name in [ "sentence_bert_config.json", "sentence_roberta_config.json", "sentence_distilbert_config.json", "sentence_camembert_config.json", "sentence_albert_config.json", "sentence_xlm-roberta_config.json", "sentence_xlnet_config.json", ]: sbert_config_path = os.path.join(input_path, config_name) if os.path.exists(sbert_config_path): break with open(sbert_config_path) as fIn: config = json.load(fIn) # Don't allow configs to set trust_remote_code if "model_args" in config and "trust_remote_code" in config["model_args"]: config["model_args"].pop("trust_remote_code") if "tokenizer_args" in config and "trust_remote_code" in config["tokenizer_args"]: config["tokenizer_args"].pop("trust_remote_code") if "config_args" in config and "trust_remote_code" in config["config_args"]: config["config_args"].pop("trust_remote_code") return cls(model_name_or_path=input_path, **config)
Memory