from __future__ import annotations import json import os from typing import Any import torch from torch import Tensor, nn class Pooling(nn.Module): """ Performs pooling (max or mean) on the token embeddings. Using pooling, it generates from a variable sized sentence a fixed sized sentence embedding. This layer also allows to use the CLS token if it is returned by the underlying word embedding model. You can concatenate multiple poolings together. Args: word_embedding_dimension: Dimensions for the word embeddings pooling_mode: Either "cls", "lasttoken", "max", "mean", "mean_sqrt_len_tokens", or "weightedmean". If set, overwrites the other pooling_mode_* settings pooling_mode_cls_token: Use the first token (CLS token) as text representations pooling_mode_max_tokens: Use max in each dimension over all tokens. pooling_mode_mean_tokens: Perform mean-pooling pooling_mode_mean_sqrt_len_tokens: Perform mean-pooling, but divide by sqrt(input_length). pooling_mode_weightedmean_tokens: Perform (position) weighted mean pooling. See `SGPT: GPT Sentence Embeddings for Semantic Search <https://arxiv.org/abs/2202.08904>`_. pooling_mode_lasttoken: Perform last token pooling. See `SGPT: GPT Sentence Embeddings for Semantic Search <https://arxiv.org/abs/2202.08904>`_ and `Text and Code Embeddings by Contrastive Pre-Training <https://arxiv.org/abs/2201.10005>`_. include_prompt: If set to false, the prompt tokens are not included in the pooling. This is useful for reproducing work that does not include the prompt tokens in the pooling like INSTRUCTOR, but otherwise not recommended. """ POOLING_MODES = ( "cls", "lasttoken", "max", "mean", "mean_sqrt_len_tokens", "weightedmean", ) def __init__( self, word_embedding_dimension: int, pooling_mode: str = None, pooling_mode_cls_token: bool = False, pooling_mode_max_tokens: bool = False, pooling_mode_mean_tokens: bool = True, pooling_mode_mean_sqrt_len_tokens: bool = False, pooling_mode_weightedmean_tokens: bool = False, pooling_mode_lasttoken: bool = False, include_prompt: bool = True, ) -> None: super().__init__() self.config_keys = [ "word_embedding_dimension", "pooling_mode_cls_token", "pooling_mode_mean_tokens", "pooling_mode_max_tokens", "pooling_mode_mean_sqrt_len_tokens", "pooling_mode_weightedmean_tokens", "pooling_mode_lasttoken", "include_prompt", ] if pooling_mode is not None: # Set pooling mode by string pooling_mode = pooling_mode.lower() if pooling_mode not in self.POOLING_MODES: raise ValueError( f"Set invalid pooling mode: {pooling_mode}. Valid pooling modes are: {self.POOLING_MODES}." ) pooling_mode_cls_token = pooling_mode == "cls" pooling_mode_max_tokens = pooling_mode == "max" pooling_mode_mean_tokens = pooling_mode == "mean" pooling_mode_mean_sqrt_len_tokens = pooling_mode == "mean_sqrt_len_tokens" pooling_mode_weightedmean_tokens = pooling_mode == "weightedmean" pooling_mode_lasttoken = pooling_mode == "lasttoken" self.word_embedding_dimension = word_embedding_dimension self.pooling_mode_cls_token = pooling_mode_cls_token self.pooling_mode_mean_tokens = pooling_mode_mean_tokens self.pooling_mode_max_tokens = pooling_mode_max_tokens self.pooling_mode_mean_sqrt_len_tokens = pooling_mode_mean_sqrt_len_tokens self.pooling_mode_weightedmean_tokens = pooling_mode_weightedmean_tokens self.pooling_mode_lasttoken = pooling_mode_lasttoken self.include_prompt = include_prompt pooling_mode_multiplier = sum( [ pooling_mode_cls_token, pooling_mode_max_tokens, pooling_mode_mean_tokens, pooling_mode_mean_sqrt_len_tokens, pooling_mode_weightedmean_tokens, pooling_mode_lasttoken, ] ) self.pooling_output_dimension = pooling_mode_multiplier * word_embedding_dimension def __repr__(self) -> str: return f"Pooling({self.get_config_dict()})" def get_pooling_mode_str(self) -> str: """Returns the pooling mode as string""" modes = [] if self.pooling_mode_cls_token: modes.append("cls") if self.pooling_mode_mean_tokens: modes.append("mean") if self.pooling_mode_max_tokens: modes.append("max") if self.pooling_mode_mean_sqrt_len_tokens: modes.append("mean_sqrt_len_tokens") if self.pooling_mode_weightedmean_tokens: modes.append("weightedmean") if self.pooling_mode_lasttoken: modes.append("lasttoken") return "+".join(modes) def forward(self, features: dict[str, Tensor]) -> dict[str, Tensor]: token_embeddings = features["token_embeddings"] attention_mask = ( features["attention_mask"] if "attention_mask" in features else torch.ones(token_embeddings.shape[:-1], device=token_embeddings.device, dtype=torch.int64) ) if not self.include_prompt and "prompt_length" in features: prompt_length = features["prompt_length"] # prompt_length is either: # * an int (in inference) # * a tensor of shape (bs), all the same value (in training with an IterableDataset) # * a tensor of shape (1) (in training with a Dataset) # We turn all into an int if isinstance(prompt_length, torch.Tensor): prompt_length = prompt_length[0].item() attention_mask[:, :prompt_length] = 0 ## Pooling strategy output_vectors = [] if self.pooling_mode_cls_token: cls_token = features.get("cls_token_embeddings", token_embeddings[:, 0]) # Take first token by default output_vectors.append(cls_token) if self.pooling_mode_max_tokens: input_mask_expanded = ( attention_mask.unsqueeze(-1).expand(token_embeddings.size()).to(token_embeddings.dtype) ) token_embeddings[input_mask_expanded == 0] = -1e9 # Set padding tokens to large negative value max_over_time = torch.max(token_embeddings, 1)[0] output_vectors.append(max_over_time) if self.pooling_mode_mean_tokens or self.pooling_mode_mean_sqrt_len_tokens: input_mask_expanded = ( attention_mask.unsqueeze(-1).expand(token_embeddings.size()).to(token_embeddings.dtype) ) sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) # If tokens are weighted (by WordWeights layer), feature 'token_weights_sum' will be present if "token_weights_sum" in features: sum_mask = features["token_weights_sum"].unsqueeze(-1).expand(sum_embeddings.size()) else: sum_mask = input_mask_expanded.sum(1) sum_mask = torch.clamp(sum_mask, min=1e-9) if self.pooling_mode_mean_tokens: output_vectors.append(sum_embeddings / sum_mask) if self.pooling_mode_mean_sqrt_len_tokens: output_vectors.append(sum_embeddings / torch.sqrt(sum_mask)) if self.pooling_mode_weightedmean_tokens: input_mask_expanded = ( attention_mask.unsqueeze(-1).expand(token_embeddings.size()).to(token_embeddings.dtype) ) # token_embeddings shape: bs, seq, hidden_dim weights = ( torch.arange(start=1, end=token_embeddings.shape[1] + 1) .unsqueeze(0) .unsqueeze(-1) .expand(token_embeddings.size()) .to(token_embeddings.dtype) .to(token_embeddings.device) ) assert weights.shape == token_embeddings.shape == input_mask_expanded.shape input_mask_expanded = input_mask_expanded * weights sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) # If tokens are weighted (by WordWeights layer), feature 'token_weights_sum' will be present if "token_weights_sum" in features: sum_mask = features["token_weights_sum"].unsqueeze(-1).expand(sum_embeddings.size()) else: sum_mask = input_mask_expanded.sum(1) sum_mask = torch.clamp(sum_mask, min=1e-9) output_vectors.append(sum_embeddings / sum_mask) if self.pooling_mode_lasttoken: bs, seq_len, hidden_dim = token_embeddings.shape # attention_mask shape: (bs, seq_len) # Get shape [bs] indices of the last token (i.e. the last token for each batch item) # Use flip and max() to get the last index of 1 in the attention mask if torch.jit.is_tracing(): # Avoid tracing the argmax with int64 input that can not be handled by ONNX Runtime: https://github.com/microsoft/onnxruntime/issues/10068 attention_mask = attention_mask.to(torch.int32) values, indices = attention_mask.flip(1).max(1) indices = torch.where(values == 0, seq_len - 1, indices) gather_indices = seq_len - indices - 1 # Turn indices from shape [bs] --> [bs, 1, hidden_dim] gather_indices = gather_indices.unsqueeze(-1).repeat(1, hidden_dim) gather_indices = gather_indices.unsqueeze(1) assert gather_indices.shape == (bs, 1, hidden_dim) # Gather along the 1st dim (seq_len) (bs, seq_len, hidden_dim -> bs, hidden_dim) # Actually no need for the attention mask as we gather the last token where attn_mask = 1 # but as we set some indices (which shouldn't be attended to) to 0 with clamp, we # use the attention mask to ignore them again input_mask_expanded = ( attention_mask.unsqueeze(-1).expand(token_embeddings.size()).to(token_embeddings.dtype) ) embedding = torch.gather(token_embeddings * input_mask_expanded, 1, gather_indices).squeeze(dim=1) output_vectors.append(embedding) output_vector = torch.cat(output_vectors, 1) features["sentence_embedding"] = output_vector return features def get_sentence_embedding_dimension(self) -> int: return self.pooling_output_dimension def get_config_dict(self) -> dict[str, Any]: return {key: self.__dict__[key] for key in self.config_keys} def save(self, output_path) -> None: with open(os.path.join(output_path, "config.json"), "w") as fOut: json.dump(self.get_config_dict(), fOut, indent=2) @staticmethod def load(input_path) -> Pooling: with open(os.path.join(input_path, "config.json")) as fIn: config = json.load(fIn) return Pooling(**config)
Memory