--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards {{ card_data }} --- # {{ model_name if model_name else "Sentence Transformer model" }} This is a [sentence-transformers](https://www.SBERT.net) model{% if base_model %} finetuned from [{{ base_model }}](https://huggingface.co/{{ base_model }}){% else %} trained{% endif %}{% if train_datasets | selectattr("name") | list %} on the {% for dataset in (train_datasets | selectattr("name")) %}{% if dataset.id %}[{{ dataset.name if dataset.name else dataset.id }}](https://huggingface.co/datasets/{{ dataset.id }}){% else %}{{ dataset.name }}{% endif %}{% if not loop.last %}{% if loop.index == (train_datasets | selectattr("name") | list | length - 1) %} and {% else %}, {% endif %}{% endif %}{% endfor %} dataset{{"s" if train_datasets | selectattr("name") | list | length > 1 else ""}}{% endif %}. It maps sentences & paragraphs to a {{ output_dimensionality }}-dimensional dense vector space and can be used for {{ task_name }}. ## Model Details ### Model Description - **Model Type:** Sentence Transformer {% if base_model -%} {%- if base_model_revision -%} - **Base model:** [{{ base_model }}](https://huggingface.co/{{ base_model }}) <!-- at revision {{ base_model_revision }} --> {%- else -%} - **Base model:** [{{ base_model }}](https://huggingface.co/{{ base_model }}) {%- endif -%} {%- else -%} <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) --> {%- endif %} - **Maximum Sequence Length:** {{ model_max_length }} tokens - **Output Dimensionality:** {{ output_dimensionality }} dimensions - **Similarity Function:** {{ similarity_fn_name }} {% if train_datasets | selectattr("name") | list -%} - **Training Dataset{{"s" if train_datasets | selectattr("name") | list | length > 1 else ""}}:** {%- for dataset in (train_datasets | selectattr("name")) %} {%- if dataset.id %} - [{{ dataset.name if dataset.name else dataset.id }}](https://huggingface.co/datasets/{{ dataset.id }}) {%- else %} - {{ dataset.name }} {%- endif %} {%- endfor %} {%- else -%} <!-- - **Training Dataset:** Unknown --> {%- endif %} {% if language -%} - **Language{{"s" if language is not string and language | length > 1 else ""}}:** {%- if language is string %} {{ language }} {%- else %} {% for lang in language -%} {{ lang }}{{ ", " if not loop.last else "" }} {%- endfor %} {%- endif %} {%- else -%} <!-- - **Language:** Unknown --> {%- endif %} {% if license -%} - **License:** {{ license }} {%- else -%} <!-- - **License:** Unknown --> {%- endif %} ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` {{ model_string }} ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the {{ hf_emoji }} Hub model = SentenceTransformer("{{ model_id | default('sentence_transformers_model_id', true) }}") # Run inference sentences = [ {%- for text in (predict_example or ["The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium."]) %} {{ "%r" | format(text) }}, {%- endfor %} ] embeddings = model.encode(sentences) print(embeddings.shape) # [{{ (predict_example or ["The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium."]) | length}}, {{ output_dimensionality | default(1024, true) }}] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [{{ (predict_example or ["The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium."]) | length}}, {{ (predict_example or ["The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium."]) | length}}] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> {% if eval_metrics %} ## Evaluation ### Metrics {% for metrics in eval_metrics %} #### {{ metrics.description }} {% if metrics.dataset_name %} * Dataset{% if metrics.dataset_name is not string and metrics.dataset_name | length > 1 %}s{% endif %}: {% if metrics.dataset_name is string -%} `{{ metrics.dataset_name }}` {%- else -%} {%- for name in metrics.dataset_name -%} `{{ name }}` {%- if not loop.last -%} {%- if loop.index == metrics.dataset_name | length - 1 %} and {% else -%}, {% endif -%} {%- endif -%} {%- endfor -%} {%- endif -%} {%- endif %} * Evaluated with {% if metrics.class_name.startswith("sentence_transformers.") %}[<code>{{ metrics.class_name.split(".")[-1] }}</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.{{ metrics.class_name.split(".")[-1] }}){% else %}<code>{{ metrics.class_name }}</code>{% endif %} {{ metrics.table }} {%- endfor %}{% endif %} <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details {% for dataset_type, dataset_list in [("training", train_datasets), ("evaluation", eval_datasets)] %}{% if dataset_list %} ### {{ dataset_type.title() }} Dataset{{"s" if dataset_list | length > 1 else ""}} {% for dataset in dataset_list %} #### {{ dataset['name'] or 'Unnamed Dataset' }} {% if dataset['name'] %}* Dataset: {% if 'id' in dataset %}[{{ dataset['name'] }}](https://huggingface.co/datasets/{{ dataset['id'] }}){% else %}{{ dataset['name'] }}{% endif %} {%- if 'revision' in dataset and 'id' in dataset %} at [{{ dataset['revision'][:7] }}](https://huggingface.co/datasets/{{ dataset['id'] }}/tree/{{ dataset['revision'] }}){% endif %}{% endif %} {% if dataset['size'] %}* Size: {{ "{:,}".format(dataset['size']) }} {{ dataset_type }} samples {% endif %}* Columns: {% if dataset['columns'] | length == 1 %}{{ dataset['columns'][0] }}{% elif dataset['columns'] | length == 2 %}{{ dataset['columns'][0] }} and {{ dataset['columns'][1] }}{% else %}{{ dataset['columns'][:-1] | join(', ') }}, and {{ dataset['columns'][-1] }}{% endif %} {% if dataset['stats_table'] %}* Approximate statistics based on the first {{ [dataset['size'], 1000] | min }} samples: {{ dataset['stats_table'] }}{% endif %}{% if dataset['examples_table'] %}* Samples: {{ dataset['examples_table'] }}{% endif %}* Loss: {% if dataset["loss"]["fullname"].startswith("sentence_transformers.") %}[<code>{{ dataset["loss"]["fullname"].split(".")[-1] }}</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#{{ dataset["loss"]["fullname"].split(".")[-1].lower() }}){% else %}<code>{{ dataset["loss"]["fullname"] }}</code>{% endif %}{% if "config_code" in dataset["loss"] %} with these parameters: {{ dataset["loss"]["config_code"] }}{% endif %} {% endfor %}{% endif %}{% endfor -%} {% if all_hyperparameters %} ### Training Hyperparameters {% if non_default_hyperparameters -%} #### Non-Default Hyperparameters {% for name, value in non_default_hyperparameters.items() %}- `{{ name }}`: {{ value }} {% endfor %}{%- endif %} #### All Hyperparameters <details><summary>Click to expand</summary> {% for name, value in all_hyperparameters.items() %}- `{{ name }}`: {{ value }} {% endfor %} </details> {% endif %} {%- if eval_lines %} ### Training Logs {% if hide_eval_lines %}<details><summary>Click to expand</summary> {% endif -%} {{ eval_lines }}{% if explain_bold_in_eval %} * The bold row denotes the saved checkpoint.{% endif %} {%- if hide_eval_lines %} </details>{% endif %} {% endif %} {%- if co2_eq_emissions %} ### Environmental Impact Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). - **Energy Consumed**: {{ "%.3f"|format(co2_eq_emissions["energy_consumed"]) }} kWh - **Carbon Emitted**: {{ "%.3f"|format(co2_eq_emissions["emissions"] / 1000) }} kg of CO2 - **Hours Used**: {{ co2_eq_emissions["hours_used"] }} hours ### Training Hardware - **On Cloud**: {{ "Yes" if co2_eq_emissions["on_cloud"] else "No" }} - **GPU Model**: {{ co2_eq_emissions["hardware_used"] or "No GPU used" }} - **CPU Model**: {{ co2_eq_emissions["cpu_model"] }} - **RAM Size**: {{ "%.2f"|format(co2_eq_emissions["ram_total_size"]) }} GB {% endif %} ### Framework Versions - Python: {{ version["python"] }} - Sentence Transformers: {{ version["sentence_transformers"] }} - Transformers: {{ version["transformers"] }} - PyTorch: {{ version["torch"] }} - Accelerate: {{ version["accelerate"] }} - Datasets: {{ version["datasets"] }} - Tokenizers: {{ version["tokenizers"] }} ## Citation ### BibTeX {% for loss_name, citation in citations.items() %} #### {{ loss_name }} ```bibtex {{ citation | trim }} ``` {% endfor %} <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
Memory