from multiprocessing import Pool from multiprocessing.pool import Pool as PWL import re import math from fractions import Fraction import numpy as np from numpy.testing import assert_equal, assert_ import pytest from pytest import raises as assert_raises import hypothesis.extra.numpy as npst from hypothesis import given, strategies, reproduce_failure # noqa: F401 from scipy.conftest import array_api_compatible, skip_xp_invalid_arg from scipy._lib._array_api import (xp_assert_equal, xp_assert_close, is_numpy, xp_copy, is_array_api_strict) from scipy._lib._util import (_aligned_zeros, check_random_state, MapWrapper, getfullargspec_no_self, FullArgSpec, rng_integers, _validate_int, _rename_parameter, _contains_nan, _rng_html_rewrite, _lazywhere) from scipy import cluster, interpolate, linalg, optimize, sparse, spatial, stats skip_xp_backends = pytest.mark.skip_xp_backends @pytest.mark.slow def test__aligned_zeros(): niter = 10 def check(shape, dtype, order, align): err_msg = repr((shape, dtype, order, align)) x = _aligned_zeros(shape, dtype, order, align=align) if align is None: align = np.dtype(dtype).alignment assert_equal(x.__array_interface__['data'][0] % align, 0) if hasattr(shape, '__len__'): assert_equal(x.shape, shape, err_msg) else: assert_equal(x.shape, (shape,), err_msg) assert_equal(x.dtype, dtype) if order == "C": assert_(x.flags.c_contiguous, err_msg) elif order == "F": if x.size > 0: # Size-0 arrays get invalid flags on NumPy 1.5 assert_(x.flags.f_contiguous, err_msg) elif order is None: assert_(x.flags.c_contiguous, err_msg) else: raise ValueError() # try various alignments for align in [1, 2, 3, 4, 8, 16, 32, 64, None]: for n in [0, 1, 3, 11]: for order in ["C", "F", None]: for dtype in [np.uint8, np.float64]: for shape in [n, (1, 2, 3, n)]: for j in range(niter): check(shape, dtype, order, align) def test_check_random_state(): # If seed is None, return the RandomState singleton used by np.random. # If seed is an int, return a new RandomState instance seeded with seed. # If seed is already a RandomState instance, return it. # Otherwise raise ValueError. rsi = check_random_state(1) assert_equal(type(rsi), np.random.RandomState) rsi = check_random_state(rsi) assert_equal(type(rsi), np.random.RandomState) rsi = check_random_state(None) assert_equal(type(rsi), np.random.RandomState) assert_raises(ValueError, check_random_state, 'a') rg = np.random.Generator(np.random.PCG64()) rsi = check_random_state(rg) assert_equal(type(rsi), np.random.Generator) def test_getfullargspec_no_self(): p = MapWrapper(1) argspec = getfullargspec_no_self(p.__init__) assert_equal(argspec, FullArgSpec(['pool'], None, None, (1,), [], None, {})) argspec = getfullargspec_no_self(p.__call__) assert_equal(argspec, FullArgSpec(['func', 'iterable'], None, None, None, [], None, {})) class _rv_generic: def _rvs(self, a, b=2, c=3, *args, size=None, **kwargs): return None rv_obj = _rv_generic() argspec = getfullargspec_no_self(rv_obj._rvs) assert_equal(argspec, FullArgSpec(['a', 'b', 'c'], 'args', 'kwargs', (2, 3), ['size'], {'size': None}, {})) def test_mapwrapper_serial(): in_arg = np.arange(10.) out_arg = np.sin(in_arg) p = MapWrapper(1) assert_(p._mapfunc is map) assert_(p.pool is None) assert_(p._own_pool is False) out = list(p(np.sin, in_arg)) assert_equal(out, out_arg) with assert_raises(RuntimeError): p = MapWrapper(0) def test_pool(): with Pool(2) as p: p.map(math.sin, [1, 2, 3, 4]) def test_mapwrapper_parallel(): in_arg = np.arange(10.) out_arg = np.sin(in_arg) with MapWrapper(2) as p: out = p(np.sin, in_arg) assert_equal(list(out), out_arg) assert_(p._own_pool is True) assert_(isinstance(p.pool, PWL)) assert_(p._mapfunc is not None) # the context manager should've closed the internal pool # check that it has by asking it to calculate again. with assert_raises(Exception) as excinfo: p(np.sin, in_arg) assert_(excinfo.type is ValueError) # can also set a PoolWrapper up with a map-like callable instance with Pool(2) as p: q = MapWrapper(p.map) assert_(q._own_pool is False) q.close() # closing the PoolWrapper shouldn't close the internal pool # because it didn't create it out = p.map(np.sin, in_arg) assert_equal(list(out), out_arg) def test_rng_integers(): rng = np.random.RandomState() # test that numbers are inclusive of high point arr = rng_integers(rng, low=2, high=5, size=100, endpoint=True) assert np.max(arr) == 5 assert np.min(arr) == 2 assert arr.shape == (100, ) # test that numbers are inclusive of high point arr = rng_integers(rng, low=5, size=100, endpoint=True) assert np.max(arr) == 5 assert np.min(arr) == 0 assert arr.shape == (100, ) # test that numbers are exclusive of high point arr = rng_integers(rng, low=2, high=5, size=100, endpoint=False) assert np.max(arr) == 4 assert np.min(arr) == 2 assert arr.shape == (100, ) # test that numbers are exclusive of high point arr = rng_integers(rng, low=5, size=100, endpoint=False) assert np.max(arr) == 4 assert np.min(arr) == 0 assert arr.shape == (100, ) # now try with np.random.Generator try: rng = np.random.default_rng() except AttributeError: return # test that numbers are inclusive of high point arr = rng_integers(rng, low=2, high=5, size=100, endpoint=True) assert np.max(arr) == 5 assert np.min(arr) == 2 assert arr.shape == (100, ) # test that numbers are inclusive of high point arr = rng_integers(rng, low=5, size=100, endpoint=True) assert np.max(arr) == 5 assert np.min(arr) == 0 assert arr.shape == (100, ) # test that numbers are exclusive of high point arr = rng_integers(rng, low=2, high=5, size=100, endpoint=False) assert np.max(arr) == 4 assert np.min(arr) == 2 assert arr.shape == (100, ) # test that numbers are exclusive of high point arr = rng_integers(rng, low=5, size=100, endpoint=False) assert np.max(arr) == 4 assert np.min(arr) == 0 assert arr.shape == (100, ) class TestValidateInt: @pytest.mark.parametrize('n', [4, np.uint8(4), np.int16(4), np.array(4)]) def test_validate_int(self, n): n = _validate_int(n, 'n') assert n == 4 @pytest.mark.parametrize('n', [4.0, np.array([4]), Fraction(4, 1)]) def test_validate_int_bad(self, n): with pytest.raises(TypeError, match='n must be an integer'): _validate_int(n, 'n') def test_validate_int_below_min(self): with pytest.raises(ValueError, match='n must be an integer not ' 'less than 0'): _validate_int(-1, 'n', 0) class TestRenameParameter: # check that wrapper `_rename_parameter` for backward-compatible # keyword renaming works correctly # Example method/function that still accepts keyword `old` @_rename_parameter("old", "new") def old_keyword_still_accepted(self, new): return new # Example method/function for which keyword `old` is deprecated @_rename_parameter("old", "new", dep_version="1.9.0") def old_keyword_deprecated(self, new): return new def test_old_keyword_still_accepted(self): # positional argument and both keyword work identically res1 = self.old_keyword_still_accepted(10) res2 = self.old_keyword_still_accepted(new=10) res3 = self.old_keyword_still_accepted(old=10) assert res1 == res2 == res3 == 10 # unexpected keyword raises an error message = re.escape("old_keyword_still_accepted() got an unexpected") with pytest.raises(TypeError, match=message): self.old_keyword_still_accepted(unexpected=10) # multiple values for the same parameter raises an error message = re.escape("old_keyword_still_accepted() got multiple") with pytest.raises(TypeError, match=message): self.old_keyword_still_accepted(10, new=10) with pytest.raises(TypeError, match=message): self.old_keyword_still_accepted(10, old=10) with pytest.raises(TypeError, match=message): self.old_keyword_still_accepted(new=10, old=10) @pytest.fixture def kwarg_lock(self): from threading import Lock return Lock() def test_old_keyword_deprecated(self, kwarg_lock): # positional argument and both keyword work identically, # but use of old keyword results in DeprecationWarning dep_msg = "Use of keyword argument `old` is deprecated" res1 = self.old_keyword_deprecated(10) res2 = self.old_keyword_deprecated(new=10) # pytest warning filter is not thread-safe, enforce serialization with kwarg_lock: with pytest.warns(DeprecationWarning, match=dep_msg): res3 = self.old_keyword_deprecated(old=10) assert res1 == res2 == res3 == 10 # unexpected keyword raises an error message = re.escape("old_keyword_deprecated() got an unexpected") with pytest.raises(TypeError, match=message): self.old_keyword_deprecated(unexpected=10) # multiple values for the same parameter raises an error and, # if old keyword is used, results in DeprecationWarning message = re.escape("old_keyword_deprecated() got multiple") with pytest.raises(TypeError, match=message): self.old_keyword_deprecated(10, new=10) with kwarg_lock: with pytest.raises(TypeError, match=message), \ pytest.warns(DeprecationWarning, match=dep_msg): # breakpoint() self.old_keyword_deprecated(10, old=10) with kwarg_lock: with pytest.raises(TypeError, match=message), \ pytest.warns(DeprecationWarning, match=dep_msg): self.old_keyword_deprecated(new=10, old=10) class TestContainsNaNTest: def test_policy(self): data = np.array([1, 2, 3, np.nan]) contains_nan, nan_policy = _contains_nan(data, nan_policy="propagate") assert contains_nan assert nan_policy == "propagate" contains_nan, nan_policy = _contains_nan(data, nan_policy="omit") assert contains_nan assert nan_policy == "omit" msg = "The input contains nan values" with pytest.raises(ValueError, match=msg): _contains_nan(data, nan_policy="raise") msg = "nan_policy must be one of" with pytest.raises(ValueError, match=msg): _contains_nan(data, nan_policy="nan") def test_contains_nan(self): data1 = np.array([1, 2, 3]) assert not _contains_nan(data1)[0] data2 = np.array([1, 2, 3, np.nan]) assert _contains_nan(data2)[0] data3 = np.array([np.nan, 2, 3, np.nan]) assert _contains_nan(data3)[0] data4 = np.array([[1, 2], [3, 4]]) assert not _contains_nan(data4)[0] data5 = np.array([[1, 2], [3, np.nan]]) assert _contains_nan(data5)[0] @skip_xp_invalid_arg def test_contains_nan_with_strings(self): data1 = np.array([1, 2, "3", np.nan]) # converted to string "nan" assert not _contains_nan(data1)[0] data2 = np.array([1, 2, "3", np.nan], dtype='object') assert _contains_nan(data2)[0] data3 = np.array([["1", 2], [3, np.nan]]) # converted to string "nan" assert not _contains_nan(data3)[0] data4 = np.array([["1", 2], [3, np.nan]], dtype='object') assert _contains_nan(data4)[0] @skip_xp_backends('jax.numpy', reason="JAX arrays do not support item assignment") @pytest.mark.usefixtures("skip_xp_backends") @array_api_compatible @pytest.mark.parametrize("nan_policy", ['propagate', 'omit', 'raise']) def test_array_api(self, xp, nan_policy): rng = np.random.default_rng(932347235892482) x0 = rng.random(size=(2, 3, 4)) x = xp.asarray(x0) x_nan = xp_copy(x, xp=xp) x_nan[1, 2, 1] = np.nan contains_nan, nan_policy_out = _contains_nan(x, nan_policy=nan_policy) assert not contains_nan assert nan_policy_out == nan_policy if nan_policy == 'raise': message = 'The input contains...' with pytest.raises(ValueError, match=message): _contains_nan(x_nan, nan_policy=nan_policy) elif nan_policy == 'omit' and not is_numpy(xp): message = "`nan_policy='omit' is incompatible..." with pytest.raises(ValueError, match=message): _contains_nan(x_nan, nan_policy=nan_policy) elif nan_policy == 'propagate': contains_nan, nan_policy_out = _contains_nan( x_nan, nan_policy=nan_policy) assert contains_nan assert nan_policy_out == nan_policy def test__rng_html_rewrite(): def mock_str(): lines = [ 'np.random.default_rng(8989843)', 'np.random.default_rng(seed)', 'np.random.default_rng(0x9a71b21474694f919882289dc1559ca)', ' bob ', ] return lines res = _rng_html_rewrite(mock_str)() ref = [ 'np.random.default_rng()', 'np.random.default_rng(seed)', 'np.random.default_rng()', ' bob ', ] assert res == ref class TestTransitionToRNG: def kmeans(self, **kwargs): rng = np.random.default_rng(3458934594269824562) return cluster.vq.kmeans2(rng.random(size=(20, 3)), 3, **kwargs) def kmeans2(self, **kwargs): rng = np.random.default_rng(3458934594269824562) return cluster.vq.kmeans2(rng.random(size=(20, 3)), 3, **kwargs) def barycentric(self, **kwargs): rng = np.random.default_rng(3458934594269824562) x1, x2, y1 = rng.random((3, 10)) f = interpolate.BarycentricInterpolator(x1, y1, **kwargs) return f(x2) def clarkson_woodruff_transform(self, **kwargs): rng = np.random.default_rng(3458934594269824562) return linalg.clarkson_woodruff_transform(rng.random((10, 10)), 3, **kwargs) def basinhopping(self, **kwargs): rng = np.random.default_rng(3458934594269824562) return optimize.basinhopping(optimize.rosen, rng.random(3), **kwargs).x def opt(self, fun, **kwargs): rng = np.random.default_rng(3458934594269824562) bounds = optimize.Bounds(-rng.random(3) * 10, rng.random(3) * 10) return fun(optimize.rosen, bounds, **kwargs).x def differential_evolution(self, **kwargs): return self.opt(optimize.differential_evolution, **kwargs) def dual_annealing(self, **kwargs): return self.opt(optimize.dual_annealing, **kwargs) def check_grad(self, **kwargs): rng = np.random.default_rng(3458934594269824562) x = rng.random(3) return optimize.check_grad(optimize.rosen, optimize.rosen_der, x, direction='random', **kwargs) def random_array(self, **kwargs): return sparse.random_array((10, 10), density=1.0, **kwargs).toarray() def random(self, **kwargs): return sparse.random(10, 10, density=1.0, **kwargs).toarray() def rand(self, **kwargs): return sparse.rand(10, 10, density=1.0, **kwargs).toarray() def svds(self, **kwargs): rng = np.random.default_rng(3458934594269824562) A = rng.random((10, 10)) return sparse.linalg.svds(A, **kwargs) def random_rotation(self, **kwargs): return spatial.transform.Rotation.random(3, **kwargs).as_matrix() def goodness_of_fit(self, **kwargs): rng = np.random.default_rng(3458934594269824562) data = rng.random(100) return stats.goodness_of_fit(stats.laplace, data, **kwargs).pvalue def permutation_test(self, **kwargs): rng = np.random.default_rng(3458934594269824562) data = tuple(rng.random((2, 100))) def statistic(x, y, axis): return np.mean(x, axis=axis) - np.mean(y, axis=axis) return stats.permutation_test(data, statistic, **kwargs).pvalue def bootstrap(self, **kwargs): rng = np.random.default_rng(3458934594269824562) data = (rng.random(100),) return stats.bootstrap(data, np.mean, **kwargs).confidence_interval def dunnett(self, **kwargs): rng = np.random.default_rng(3458934594269824562) x, y, control = rng.random((3, 100)) return stats.dunnett(x, y, control=control, **kwargs).pvalue def sobol_indices(self, **kwargs): def f_ishigami(x): return (np.sin(x[0]) + 7 * np.sin(x[1]) ** 2 + 0.1 * (x[2] ** 4) * np.sin(x[0])) dists = [stats.uniform(loc=-np.pi, scale=2 * np.pi), stats.uniform(loc=-np.pi, scale=2 * np.pi), stats.uniform(loc=-np.pi, scale=2 * np.pi)] res = stats.sobol_indices(func=f_ishigami, n=1024, dists=dists, **kwargs) return res.first_order def qmc_engine(self, engine, **kwargs): qrng = engine(d=1, **kwargs) return qrng.random(4) def halton(self, **kwargs): return self.qmc_engine(stats.qmc.Halton, **kwargs) def sobol(self, **kwargs): return self.qmc_engine(stats.qmc.Sobol, **kwargs) def latin_hypercube(self, **kwargs): return self.qmc_engine(stats.qmc.LatinHypercube, **kwargs) def poisson_disk(self, **kwargs): return self.qmc_engine(stats.qmc.PoissonDisk, **kwargs) def multivariate_normal_qmc(self, **kwargs): X = stats.qmc.MultivariateNormalQMC([0], **kwargs) return X.random(4) def multinomial_qmc(self, **kwargs): X = stats.qmc.MultinomialQMC([0.5, 0.5], 4, **kwargs) return X.random(4) def permutation_method(self, **kwargs): rng = np.random.default_rng(3458934594269824562) data = tuple(rng.random((2, 100))) method = stats.PermutationMethod(**kwargs) return stats.pearsonr(*data, method=method).pvalue def bootstrap_method(self, **kwargs): rng = np.random.default_rng(3458934594269824562) data = tuple(rng.random((2, 100))) res = stats.pearsonr(*data) method = stats.BootstrapMethod(**kwargs) return res.confidence_interval(method=method) @pytest.mark.fail_slow(10) @pytest.mark.slow @pytest.mark.parametrize("method, arg_name", [ (kmeans, "seed"), (kmeans2, "seed"), (barycentric, "random_state"), (clarkson_woodruff_transform, "seed"), (basinhopping, "seed"), (differential_evolution, "seed"), (dual_annealing, "seed"), (check_grad, "seed"), (random_array, 'random_state'), (random, 'random_state'), (rand, 'random_state'), (svds, "random_state"), (random_rotation, "random_state"), (goodness_of_fit, "random_state"), (permutation_test, "random_state"), (bootstrap, "random_state"), (permutation_method, "random_state"), (bootstrap_method, "random_state"), (dunnett, "random_state"), (sobol_indices, "random_state"), (halton, "seed"), (sobol, "seed"), (latin_hypercube, "seed"), (poisson_disk, "seed"), (multivariate_normal_qmc, "seed"), (multinomial_qmc, "seed"), ]) def test_rng_deterministic(self, method, arg_name): np.random.seed(None) seed = 2949672964 rng = np.random.default_rng(seed) message = "got multiple values for argument now known as `rng`" with pytest.raises(TypeError, match=message): method(self, **{'rng': rng, arg_name: seed}) rng = np.random.default_rng(seed) res1 = method(self, rng=rng) res2 = method(self, rng=seed) assert_equal(res2, res1) if method.__name__ in {"dunnett", "sobol_indices"}: # the two kwargs have essentially the same behavior for these functions res3 = method(self, **{arg_name: seed}) assert_equal(res3, res1) return rng = np.random.RandomState(seed) res1 = method(self, **{arg_name: rng}) res2 = method(self, **{arg_name: seed}) if method.__name__ in {"halton", "sobol", "latin_hypercube", "poisson_disk", "multivariate_normal_qmc", "multinomial_qmc"}: # For these, passing `random_state=RandomState(seed)` is not the same as # passing integer `seed`. res1b = method(self, **{arg_name: np.random.RandomState(seed)}) assert_equal(res1b, res1) res2b = method(self, **{arg_name: seed}) assert_equal(res2b, res2) return np.random.seed(seed) res3 = method(self, **{arg_name: None}) assert_equal(res2, res1) assert_equal(res3, res1) class TestLazywhere: n_arrays = strategies.integers(min_value=1, max_value=3) rng_seed = strategies.integers(min_value=1000000000, max_value=9999999999) dtype = strategies.sampled_from((np.float32, np.float64)) p = strategies.floats(min_value=0, max_value=1) data = strategies.data() @pytest.mark.fail_slow(10) @pytest.mark.filterwarnings('ignore::RuntimeWarning') # overflows, etc. @skip_xp_backends('jax.numpy', reason="JAX arrays do not support item assignment") @pytest.mark.usefixtures("skip_xp_backends") @array_api_compatible @given(n_arrays=n_arrays, rng_seed=rng_seed, dtype=dtype, p=p, data=data) @pytest.mark.thread_unsafe def test_basic(self, n_arrays, rng_seed, dtype, p, data, xp): mbs = npst.mutually_broadcastable_shapes(num_shapes=n_arrays+1, min_side=0) input_shapes, result_shape = data.draw(mbs) cond_shape, *shapes = input_shapes elements = {'allow_subnormal': False} # cupy/cupy#8382 fillvalue = xp.asarray(data.draw(npst.arrays(dtype=dtype, shape=tuple(), elements=elements))) float_fillvalue = float(fillvalue) arrays = [xp.asarray(data.draw(npst.arrays(dtype=dtype, shape=shape))) for shape in shapes] def f(*args): return sum(arg for arg in args) def f2(*args): return sum(arg for arg in args) / 2 rng = np.random.default_rng(rng_seed) cond = xp.asarray(rng.random(size=cond_shape) > p) res1 = _lazywhere(cond, arrays, f, fillvalue) res2 = _lazywhere(cond, arrays, f, f2=f2) if not is_array_api_strict(xp): res3 = _lazywhere(cond, arrays, f, float_fillvalue) # Ensure arrays are at least 1d to follow sane type promotion rules. # This can be removed when minimum supported NumPy is 2.0 if xp == np: cond, fillvalue, *arrays = np.atleast_1d(cond, fillvalue, *arrays) ref1 = xp.where(cond, f(*arrays), fillvalue) ref2 = xp.where(cond, f(*arrays), f2(*arrays)) if not is_array_api_strict(xp): # Array API standard doesn't currently define behavior when fillvalue is a # Python scalar. When it does, test can be run with array_api_strict, too. ref3 = xp.where(cond, f(*arrays), float_fillvalue) if xp == np: # because we ensured arrays are at least 1d ref1 = ref1.reshape(result_shape) ref2 = ref2.reshape(result_shape) ref3 = ref3.reshape(result_shape) xp_assert_close(res1, ref1, rtol=2e-16) xp_assert_equal(res2, ref2) if not is_array_api_strict(xp): xp_assert_equal(res3, ref3)
Memory