// Licensed to the Apache Software Foundation (ASF) under one // or more contributor license agreements. See the NOTICE file // distributed with this work for additional information // regarding copyright ownership. The ASF licenses this file // to you under the Apache License, Version 2.0 (the // "License"); you may not use this file except in compliance // with the License. You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, // software distributed under the License is distributed on an // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. See the License for the // specific language governing permissions and limitations // under the License. #pragma once #include <memory> #include <tuple> #include <type_traits> #include "arrow/result.h" #include "arrow/util/macros.h" namespace arrow { namespace internal { struct Empty { static Result<Empty> ToResult(Status s) { if (ARROW_PREDICT_TRUE(s.ok())) { return Empty{}; } return s; } }; /// Helper struct for examining lambdas and other callables. /// TODO(ARROW-12655) support function pointers struct call_traits { public: template <typename R, typename... A> static std::false_type is_overloaded_impl(R(A...)); template <typename F> static std::false_type is_overloaded_impl(decltype(&F::operator())*); template <typename F> static std::true_type is_overloaded_impl(...); template <typename F, typename R, typename... A> static R return_type_impl(R (F::*)(A...)); template <typename F, typename R, typename... A> static R return_type_impl(R (F::*)(A...) const); template <std::size_t I, typename F, typename R, typename... A> static typename std::tuple_element<I, std::tuple<A...>>::type argument_type_impl( R (F::*)(A...)); template <std::size_t I, typename F, typename R, typename... A> static typename std::tuple_element<I, std::tuple<A...>>::type argument_type_impl( R (F::*)(A...) const); template <std::size_t I, typename F, typename R, typename... A> static typename std::tuple_element<I, std::tuple<A...>>::type argument_type_impl( R (F::*)(A...) &&); template <typename F, typename R, typename... A> static std::integral_constant<int, sizeof...(A)> argument_count_impl(R (F::*)(A...)); template <typename F, typename R, typename... A> static std::integral_constant<int, sizeof...(A)> argument_count_impl(R (F::*)(A...) const); template <typename F, typename R, typename... A> static std::integral_constant<int, sizeof...(A)> argument_count_impl(R (F::*)(A...) &&); /// bool constant indicating whether F is a callable with more than one possible /// signature. Will be true_type for objects which define multiple operator() or which /// define a template operator() template <typename F> using is_overloaded = decltype(is_overloaded_impl<typename std::decay<F>::type>(NULLPTR)); template <typename F, typename T = void> using enable_if_overloaded = typename std::enable_if<is_overloaded<F>::value, T>::type; template <typename F, typename T = void> using disable_if_overloaded = typename std::enable_if<!is_overloaded<F>::value, T>::type; /// If F is not overloaded, the argument types of its call operator can be /// extracted via call_traits::argument_type<Index, F> template <std::size_t I, typename F> using argument_type = decltype(argument_type_impl<I>(&std::decay<F>::type::operator())); template <typename F> using argument_count = decltype(argument_count_impl(&std::decay<F>::type::operator())); template <typename F> using return_type = decltype(return_type_impl(&std::decay<F>::type::operator())); template <typename F, typename T, typename RT = T> using enable_if_return = typename std::enable_if<std::is_same<return_type<F>, T>::value, RT>; template <typename T, typename R = void> using enable_if_empty = typename std::enable_if<std::is_same<T, Empty>::value, R>::type; template <typename T, typename R = void> using enable_if_not_empty = typename std::enable_if<!std::is_same<T, Empty>::value, R>::type; }; /// A type erased callable object which may only be invoked once. /// It can be constructed from any lambda which matches the provided call signature. /// Invoking it results in destruction of the lambda, freeing any state/references /// immediately. Invoking a default constructed FnOnce or one which has already been /// invoked will segfault. template <typename Signature> class FnOnce; template <typename R, typename... A> class FnOnce<R(A...)> { public: FnOnce() = default; template <typename Fn, typename = typename std::enable_if<std::is_convertible< decltype(std::declval<Fn&&>()(std::declval<A>()...)), R>::value>::type> FnOnce(Fn fn) : impl_(new FnImpl<Fn>(std::move(fn))) { // NOLINT runtime/explicit } explicit operator bool() const { return impl_ != NULLPTR; } R operator()(A... a) && { auto bye = std::move(impl_); return bye->invoke(std::forward<A&&>(a)...); } private: struct Impl { virtual ~Impl() = default; virtual R invoke(A&&... a) = 0; }; template <typename Fn> struct FnImpl : Impl { explicit FnImpl(Fn fn) : fn_(std::move(fn)) {} R invoke(A&&... a) override { return std::move(fn_)(std::forward<A&&>(a)...); } Fn fn_; }; std::unique_ptr<Impl> impl_; }; } // namespace internal } // namespace arrow
Memory