// Licensed to the Apache Software Foundation (ASF) under one // or more contributor license agreements. See the NOTICE file // distributed with this work for additional information // regarding copyright ownership. The ASF licenses this file // to you under the Apache License, Version 2.0 (the // "License"); you may not use this file except in compliance // with the License. You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, // software distributed under the License is distributed on an // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. See the License for the // specific language governing permissions and limitations // under the License. #pragma once #ifdef _WIN32 # define ARROW_LITTLE_ENDIAN 1 #else # if defined(__APPLE__) || defined(__FreeBSD__) # include <machine/endian.h> // IWYU pragma: keep # elif defined(sun) || defined(__sun) # include <sys/byteorder.h> // IWYU pragma: keep # else # include <endian.h> // IWYU pragma: keep # endif # # ifndef __BYTE_ORDER__ # error "__BYTE_ORDER__ not defined" # endif # # ifndef __ORDER_LITTLE_ENDIAN__ # error "__ORDER_LITTLE_ENDIAN__ not defined" # endif # # if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ # define ARROW_LITTLE_ENDIAN 1 # else # define ARROW_LITTLE_ENDIAN 0 # endif #endif #if defined(_MSC_VER) # include <intrin.h> // IWYU pragma: keep # define ARROW_BYTE_SWAP64 _byteswap_uint64 # define ARROW_BYTE_SWAP32 _byteswap_ulong #else # define ARROW_BYTE_SWAP64 __builtin_bswap64 # define ARROW_BYTE_SWAP32 __builtin_bswap32 #endif #include <algorithm> #include <array> #include "arrow/util/type_traits.h" #include "arrow/util/ubsan.h" namespace arrow { namespace bit_util { // // Byte-swap 16-bit, 32-bit and 64-bit values // // Swap the byte order (i.e. endianness) static inline int64_t ByteSwap(int64_t value) { return ARROW_BYTE_SWAP64(value); } static inline uint64_t ByteSwap(uint64_t value) { return static_cast<uint64_t>(ARROW_BYTE_SWAP64(value)); } static inline int32_t ByteSwap(int32_t value) { return ARROW_BYTE_SWAP32(value); } static inline uint32_t ByteSwap(uint32_t value) { return static_cast<uint32_t>(ARROW_BYTE_SWAP32(value)); } static inline int16_t ByteSwap(int16_t value) { constexpr auto m = static_cast<int16_t>(0xff); return static_cast<int16_t>(((value >> 8) & m) | ((value & m) << 8)); } static inline uint16_t ByteSwap(uint16_t value) { return static_cast<uint16_t>(ByteSwap(static_cast<int16_t>(value))); } static inline uint8_t ByteSwap(uint8_t value) { return value; } static inline int8_t ByteSwap(int8_t value) { return value; } static inline double ByteSwap(double value) { const uint64_t swapped = ARROW_BYTE_SWAP64(util::SafeCopy<uint64_t>(value)); return util::SafeCopy<double>(swapped); } static inline float ByteSwap(float value) { const uint32_t swapped = ARROW_BYTE_SWAP32(util::SafeCopy<uint32_t>(value)); return util::SafeCopy<float>(swapped); } // Write the swapped bytes into dst. Src and dst cannot overlap. static inline void ByteSwap(void* dst, const void* src, int len) { switch (len) { case 1: *reinterpret_cast<int8_t*>(dst) = *reinterpret_cast<const int8_t*>(src); return; case 2: *reinterpret_cast<int16_t*>(dst) = ByteSwap(*reinterpret_cast<const int16_t*>(src)); return; case 4: *reinterpret_cast<int32_t*>(dst) = ByteSwap(*reinterpret_cast<const int32_t*>(src)); return; case 8: *reinterpret_cast<int64_t*>(dst) = ByteSwap(*reinterpret_cast<const int64_t*>(src)); return; default: break; } auto d = reinterpret_cast<uint8_t*>(dst); auto s = reinterpret_cast<const uint8_t*>(src); for (int i = 0; i < len; ++i) { d[i] = s[len - i - 1]; } } // Convert to little/big endian format from the machine's native endian format. #if ARROW_LITTLE_ENDIAN template <typename T, typename = internal::EnableIfIsOneOf< T, int64_t, uint64_t, int32_t, uint32_t, int16_t, uint16_t, uint8_t, int8_t, float, double, bool>> static inline T ToBigEndian(T value) { return ByteSwap(value); } template <typename T, typename = internal::EnableIfIsOneOf< T, int64_t, uint64_t, int32_t, uint32_t, int16_t, uint16_t, uint8_t, int8_t, float, double, bool>> static inline T ToLittleEndian(T value) { return value; } #else template <typename T, typename = internal::EnableIfIsOneOf< T, int64_t, uint64_t, int32_t, uint32_t, int16_t, uint16_t, uint8_t, int8_t, float, double, bool>> static inline T ToBigEndian(T value) { return value; } template <typename T, typename = internal::EnableIfIsOneOf< T, int64_t, uint64_t, int32_t, uint32_t, int16_t, uint16_t, uint8_t, int8_t, float, double, bool>> static inline T ToLittleEndian(T value) { return ByteSwap(value); } #endif // Convert from big/little endian format to the machine's native endian format. #if ARROW_LITTLE_ENDIAN template <typename T, typename = internal::EnableIfIsOneOf< T, int64_t, uint64_t, int32_t, uint32_t, int16_t, uint16_t, uint8_t, int8_t, float, double, bool>> static inline T FromBigEndian(T value) { return ByteSwap(value); } template <typename T, typename = internal::EnableIfIsOneOf< T, int64_t, uint64_t, int32_t, uint32_t, int16_t, uint16_t, uint8_t, int8_t, float, double, bool>> static inline T FromLittleEndian(T value) { return value; } #else template <typename T, typename = internal::EnableIfIsOneOf< T, int64_t, uint64_t, int32_t, uint32_t, int16_t, uint16_t, uint8_t, int8_t, float, double, bool>> static inline T FromBigEndian(T value) { return value; } template <typename T, typename = internal::EnableIfIsOneOf< T, int64_t, uint64_t, int32_t, uint32_t, int16_t, uint16_t, uint8_t, int8_t, float, double, bool>> static inline T FromLittleEndian(T value) { return ByteSwap(value); } #endif // Handle endianness in *word* granularity (keep individual array element untouched) namespace little_endian { namespace detail { // Read a native endian array as little endian template <typename T, size_t N> struct Reader { const std::array<T, N>& native_array; explicit Reader(const std::array<T, N>& native_array) : native_array(native_array) {} const T& operator[](size_t i) const { return native_array[ARROW_LITTLE_ENDIAN ? i : N - 1 - i]; } }; // Read/write a native endian array as little endian template <typename T, size_t N> struct Writer { std::array<T, N>* native_array; explicit Writer(std::array<T, N>* native_array) : native_array(native_array) {} const T& operator[](size_t i) const { return (*native_array)[ARROW_LITTLE_ENDIAN ? i : N - 1 - i]; } T& operator[](size_t i) { return (*native_array)[ARROW_LITTLE_ENDIAN ? i : N - 1 - i]; } }; } // namespace detail // Construct array reader and try to deduce template augments template <typename T, size_t N> static inline detail::Reader<T, N> Make(const std::array<T, N>& native_array) { return detail::Reader<T, N>(native_array); } // Construct array writer and try to deduce template augments template <typename T, size_t N> static inline detail::Writer<T, N> Make(std::array<T, N>* native_array) { return detail::Writer<T, N>(native_array); } // Convert little endian array to native endian template <typename T, size_t N> static inline std::array<T, N> ToNative(std::array<T, N> array) { if (!ARROW_LITTLE_ENDIAN) { std::reverse(array.begin(), array.end()); } return array; } // Convert native endian array to little endian template <typename T, size_t N> static inline std::array<T, N> FromNative(std::array<T, N> array) { return ToNative(array); } } // namespace little_endian } // namespace bit_util } // namespace arrow
Memory