� B�g���F�dZddlmZddlZddlmZmZddlZddlm Z ddl m Z ddl mZddlmZerdd lmZmZmZmZmZdd lmZmZe ed ed d z���dejdfd d���Ze ed edd z��� d!d"d���ZdS)#z pickle compat �)� annotationsN)� TYPE_CHECKING�Any)� pickle_compat)�doc)� _shared_docs)� get_handle)�CompressionOptions�FilePath�ReadPickleBuffer�StorageOptions� WriteBuffer)� DataFrame�Series�storage_options�compression_options�filepath_or_buffer)rr�infer�objr�FilePath | WriteBuffer[bytes]� compressionr �protocol�int�StorageOptions | None�return�Nonec��|dkr tj}t|d|d|���5}tj||j|���ddd��dS#1swxYwYdS)a9 Pickle (serialize) object to file. Parameters ---------- obj : any object Any python object. filepath_or_buffer : str, path object, or file-like object String, path object (implementing ``os.PathLike[str]``), or file-like object implementing a binary ``write()`` function. Also accepts URL. URL has to be of S3 or GCS. {compression_options} .. versionchanged:: 1.4.0 Zstandard support. protocol : int Int which indicates which protocol should be used by the pickler, default HIGHEST_PROTOCOL (see [1], paragraph 12.1.2). The possible values for this parameter depend on the version of Python. For Python 2.x, possible values are 0, 1, 2. For Python>=3.0, 3 is a valid value. For Python >= 3.4, 4 is a valid value. A negative value for the protocol parameter is equivalent to setting its value to HIGHEST_PROTOCOL. {storage_options} .. [1] https://docs.python.org/3/library/pickle.html See Also -------- read_pickle : Load pickled pandas object (or any object) from file. DataFrame.to_hdf : Write DataFrame to an HDF5 file. DataFrame.to_sql : Write DataFrame to a SQL database. DataFrame.to_parquet : Write a DataFrame to the binary parquet format. Examples -------- >>> original_df = pd.DataFrame({{"foo": range(5), "bar": range(5, 10)}}) # doctest: +SKIP >>> original_df # doctest: +SKIP foo bar 0 0 5 1 1 6 2 2 7 3 3 8 4 4 9 >>> pd.to_pickle(original_df, "./dummy.pkl") # doctest: +SKIP >>> unpickled_df = pd.read_pickle("./dummy.pkl") # doctest: +SKIP >>> unpickled_df # doctest: +SKIP foo bar 0 0 5 1 1 6 2 2 7 3 3 8 4 4 9 r�wbF�r�is_textr)rN)�pickle�HIGHEST_PROTOCOLr �dump�handle)rrrrr�handless �`/home/asafur/pinokio/api/open-webui.git/app/env/lib/python3.11/site-packages/pandas/io/pickle.py� to_pickler'!s���F�!�|�|��*�� �� ���'�  � � �<� �� �C���(�;�;�;�;�<�<�<�<�<�<�<�<�<�<�<�<����<�<�<�<�<�<s�A�A�A�decompression_options)rr(�FilePath | ReadPickleBuffer�DataFrame | Seriesc�H�ttttf}t |d|d|���5} t jd���5t jdt��tj |j ��cddd��cddd��S#1swxYwYn2#|$r*tj |j d���cYcddd��SwxYwn7#t$r*tj |j d ���cYcddd��SwxYw ddd��dS#1swxYwYdS) a� Load pickled pandas object (or any object) from file. .. warning:: Loading pickled data received from untrusted sources can be unsafe. See `here <https://docs.python.org/3/library/pickle.html>`__. Parameters ---------- filepath_or_buffer : str, path object, or file-like object String, path object (implementing ``os.PathLike[str]``), or file-like object implementing a binary ``readlines()`` function. Also accepts URL. URL is not limited to S3 and GCS. {decompression_options} .. versionchanged:: 1.4.0 Zstandard support. {storage_options} Returns ------- same type as object stored in file See Also -------- DataFrame.to_pickle : Pickle (serialize) DataFrame object to file. Series.to_pickle : Pickle (serialize) Series object to file. read_hdf : Read HDF5 file into a DataFrame. read_sql : Read SQL query or database table into a DataFrame. read_parquet : Load a parquet object, returning a DataFrame. Notes ----- read_pickle is only guaranteed to be backwards compatible to pandas 0.20.3 provided the object was serialized with to_pickle. Examples -------- >>> original_df = pd.DataFrame( ... {{"foo": range(5), "bar": range(5, 10)}} ... ) # doctest: +SKIP >>> original_df # doctest: +SKIP foo bar 0 0 5 1 1 6 2 2 7 3 3 8 4 4 9 >>> pd.to_pickle(original_df, "./dummy.pkl") # doctest: +SKIP >>> unpickled_df = pd.read_pickle("./dummy.pkl") # doctest: +SKIP >>> unpickled_df # doctest: +SKIP foo bar 0 0 5 1 1 6 2 2 7 3 3 8 4 4 9 �rbFrT)�record�ignoreN)�encodingzlatin-1)�AttributeError� ImportError�ModuleNotFoundError� TypeErrorr �warnings�catch_warnings� simplefilter�Warningr!�loadr$�pc�UnicodeDecodeError)rrr� excs_to_catchr%s r&� read_pickler<rs(��L$�[�2E�y�Q�M� �� ���'�  � � �?� �  ?� >��,�D�9�9�9�7�7��)�(�G�<�<�<�!�;�w�~�6�6�7�7�7�7�7�7�7�?�?�?�?�?�?�?�?�7�7�7�7����7�7�7�7�7��!� >� >� >��w�w�~��=�=�=�=�=�-?�?�?�?�?�?�?�?�$ >���� 7��"� ?� ?� ?��7�7�>�I�>�>�>� >� >�3?�?�?�?�?�?�?�?�. ?����7�?�?�?�?�?�?�?�?�?�?�?�?����?�?�?�?�?�?sv�D�B�3B�: B�B �B�B �B�C� C�?C� C�C�D�%D�7D�D�D�D�D) rrrrrr rrrrrr)rN)rr)rr rrrr*)�__doc__� __future__rr!�typingrrr4� pandas.compatrr9�pandas.util._decoratorsr�pandas.core.shared_docsr�pandas.io.commonr �pandas._typingr r r r r�pandasrrr"r'r<��r&�<module>rHs�����"�"�"�"�"�"� � � � �������������-�-�-�-�-�-�'�'�'�'�'�'�0�0�0�0�0�0�'�'�'�'�'�'�� ����������������������� �� �!2�3�$�%:�;�>R�R����'.��+�-1� J<�J<�J<�J<� ��J<�Z�� �!2�3�&�'>�?�BV�V���� '.�-1�\?�\?�\?�\?� ��\?�\?�\?rG
Memory