PKaZZZ)�O  joblib/__init__.py"""Joblib is a set of tools to provide **lightweight pipelining in Python**. In particular: 1. transparent disk-caching of functions and lazy re-evaluation (memoize pattern) 2. easy simple parallel computing Joblib is optimized to be **fast** and **robust** on large data in particular and has specific optimizations for `numpy` arrays. It is **BSD-licensed**. ==================== =============================================== **Documentation:** https://joblib.readthedocs.io **Download:** https://pypi.python.org/pypi/joblib#downloads **Source code:** https://github.com/joblib/joblib **Report issues:** https://github.com/joblib/joblib/issues ==================== =============================================== Vision -------- The vision is to provide tools to easily achieve better performance and reproducibility when working with long running jobs. * **Avoid computing the same thing twice**: code is often rerun again and again, for instance when prototyping computational-heavy jobs (as in scientific development), but hand-crafted solutions to alleviate this issue are error-prone and often lead to unreproducible results. * **Persist to disk transparently**: efficiently persisting arbitrary objects containing large data is hard. Using joblib's caching mechanism avoids hand-written persistence and implicitly links the file on disk to the execution context of the original Python object. As a result, joblib's persistence is good for resuming an application status or computational job, eg after a crash. Joblib addresses these problems while **leaving your code and your flow control as unmodified as possible** (no framework, no new paradigms). Main features ------------------ 1) **Transparent and fast disk-caching of output value:** a memoize or make-like functionality for Python functions that works well for arbitrary Python objects, including very large numpy arrays. Separate persistence and flow-execution logic from domain logic or algorithmic code by writing the operations as a set of steps with well-defined inputs and outputs: Python functions. Joblib can save their computation to disk and rerun it only if necessary:: >>> from joblib import Memory >>> cachedir = 'your_cache_dir_goes_here' >>> mem = Memory(cachedir) >>> import numpy as np >>> a = np.vander(np.arange(3)).astype(float) >>> square = mem.cache(np.square) >>> b = square(a) # doctest: +ELLIPSIS ______________________________________________________________________... [Memory] Calling square... square(array([[0., 0., 1.], [1., 1., 1.], [4., 2., 1.]])) _________________________________________________...square - ...s, 0.0min >>> c = square(a) >>> # The above call did not trigger an evaluation 2) **Embarrassingly parallel helper:** to make it easy to write readable parallel code and debug it quickly:: >>> from joblib import Parallel, delayed >>> from math import sqrt >>> Parallel(n_jobs=1)(delayed(sqrt)(i**2) for i in range(10)) [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0] 3) **Fast compressed Persistence**: a replacement for pickle to work efficiently on Python objects containing large data ( *joblib.dump* & *joblib.load* ). .. >>> import shutil ; shutil.rmtree(cachedir) """ # PEP0440 compatible formatted version, see: # https://www.python.org/dev/peps/pep-0440/ # # Generic release markers: # X.Y # X.Y.Z # For bugfix releases # # Admissible pre-release markers: # X.YaN # Alpha release # X.YbN # Beta release # X.YrcN # Release Candidate # X.Y # Final release # # Dev branch marker is: 'X.Y.dev' or 'X.Y.devN' where N is an integer. # 'X.Y.dev0' is the canonical version of 'X.Y.dev' # __version__ = '1.4.0' import os from .memory import Memory from .memory import MemorizedResult from .memory import register_store_backend from .memory import expires_after from .logger import PrintTime from .logger import Logger from .hashing import hash from .numpy_pickle import dump from .numpy_pickle import load from .compressor import register_compressor from .parallel import Parallel from .parallel import delayed from .parallel import cpu_count from .parallel import register_parallel_backend from .parallel import parallel_backend from .parallel import parallel_config from .parallel import effective_n_jobs from ._cloudpickle_wrapper import wrap_non_picklable_objects __all__ = ['Memory', 'MemorizedResult', 'PrintTime', 'Logger', 'hash', 'dump', 'load', 'Parallel', 'delayed', 'cpu_count', 'effective_n_jobs', 'register_parallel_backend', 'parallel_backend', 'expires_after', 'register_store_backend', 'register_compressor', 'wrap_non_picklable_objects', 'parallel_config'] # Workaround issue discovered in intel-openmp 2019.5: # https://github.com/ContinuumIO/anaconda-issues/issues/11294 os.environ.setdefault("KMP_INIT_AT_FORK", "FALSE") PKaZZZGy��joblib/_cloudpickle_wrapper.py""" Small shim of loky's cloudpickle_wrapper to avoid failure when multiprocessing is not available. """ from ._multiprocessing_helpers import mp def _my_wrap_non_picklable_objects(obj, keep_wrapper=True): return obj if mp is not None: from .externals.loky import wrap_non_picklable_objects else: wrap_non_picklable_objects = _my_wrap_non_picklable_objects __all__ = ["wrap_non_picklable_objects"] PKaZZZ��V44joblib/_dask.pyfrom __future__ import print_function, division, absolute_import import asyncio import concurrent.futures import contextlib import time from uuid import uuid4 import weakref from .parallel import parallel_config from .parallel import AutoBatchingMixin, ParallelBackendBase from ._utils import ( _TracebackCapturingWrapper, _retrieve_traceback_capturing_wrapped_call ) try: import dask import distributed except ImportError: dask = None distributed = None if dask is not None and distributed is not None: from dask.utils import funcname from dask.sizeof import sizeof from dask.distributed import ( Client, as_completed, get_client, secede, rejoin, ) from distributed.utils import thread_state try: # asyncio.TimeoutError, Python3-only error thrown by recent versions of # distributed from distributed.utils import TimeoutError as _TimeoutError except ImportError: from tornado.gen import TimeoutError as _TimeoutError def is_weakrefable(obj): try: weakref.ref(obj) return True except TypeError: return False class _WeakKeyDictionary: """A variant of weakref.WeakKeyDictionary for unhashable objects. This datastructure is used to store futures for broadcasted data objects such as large numpy arrays or pandas dataframes that are not hashable and therefore cannot be used as keys of traditional python dicts. Furthermore using a dict with id(array) as key is not safe because the Python is likely to reuse id of recently collected arrays. """ def __init__(self): self._data = {} def __getitem__(self, obj): ref, val = self._data[id(obj)] if ref() is not obj: # In case of a race condition with on_destroy. raise KeyError(obj) return val def __setitem__(self, obj, value): key = id(obj) try: ref, _ = self._data[key] if ref() is not obj: # In case of race condition with on_destroy. raise KeyError(obj) except KeyError: # Insert the new entry in the mapping along with a weakref # callback to automatically delete the entry from the mapping # as soon as the object used as key is garbage collected. def on_destroy(_): del self._data[key] ref = weakref.ref(obj, on_destroy) self._data[key] = ref, value def __len__(self): return len(self._data) def clear(self): self._data.clear() def _funcname(x): try: if isinstance(x, list): x = x[0][0] except Exception: pass return funcname(x) def _make_tasks_summary(tasks): """Summarize of list of (func, args, kwargs) function calls""" unique_funcs = {func for func, args, kwargs in tasks} if len(unique_funcs) == 1: mixed = False else: mixed = True return len(tasks), mixed, _funcname(tasks) class Batch: """dask-compatible wrapper that executes a batch of tasks""" def __init__(self, tasks): # collect some metadata from the tasks to ease Batch calls # introspection when debugging self._num_tasks, self._mixed, self._funcname = _make_tasks_summary( tasks ) def __call__(self, tasks=None): results = [] with parallel_config(backend='dask'): for func, args, kwargs in tasks: results.append(func(*args, **kwargs)) return results def __repr__(self): descr = f"batch_of_{self._funcname}_{self._num_tasks}_calls" if self._mixed: descr = "mixed_" + descr return descr def _joblib_probe_task(): # Noop used by the joblib connector to probe when workers are ready. pass class DaskDistributedBackend(AutoBatchingMixin, ParallelBackendBase): MIN_IDEAL_BATCH_DURATION = 0.2 MAX_IDEAL_BATCH_DURATION = 1.0 supports_retrieve_callback = True default_n_jobs = -1 def __init__(self, scheduler_host=None, scatter=None, client=None, loop=None, wait_for_workers_timeout=10, **submit_kwargs): super().__init__() if distributed is None: msg = ("You are trying to use 'dask' as a joblib parallel backend " "but dask is not installed. Please install dask " "to fix this error.") raise ValueError(msg) if client is None: if scheduler_host: client = Client(scheduler_host, loop=loop, set_as_default=False) else: try: client = get_client() except ValueError as e: msg = ("To use Joblib with Dask first create a Dask Client" "\n\n" " from dask.distributed import Client\n" " client = Client()\n" "or\n" " client = Client('scheduler-address:8786')") raise ValueError(msg) from e self.client = client if scatter is not None and not isinstance(scatter, (list, tuple)): raise TypeError("scatter must be a list/tuple, got " "`%s`" % type(scatter).__name__) if scatter is not None and len(scatter) > 0: # Keep a reference to the scattered data to keep the ids the same self._scatter = list(scatter) scattered = self.client.scatter(scatter, broadcast=True) self.data_futures = {id(x): f for x, f in zip(scatter, scattered)} else: self._scatter = [] self.data_futures = {} self.wait_for_workers_timeout = wait_for_workers_timeout self.submit_kwargs = submit_kwargs self.waiting_futures = as_completed( [], loop=client.loop, with_results=True, raise_errors=False ) self._results = {} self._callbacks = {} async def _collect(self): while self._continue: async for future, result in self.waiting_futures: cf_future = self._results.pop(future) callback = self._callbacks.pop(future) if future.status == "error": typ, exc, tb = result cf_future.set_exception(exc) else: cf_future.set_result(result) callback(result) await asyncio.sleep(0.01) def __reduce__(self): return (DaskDistributedBackend, ()) def get_nested_backend(self): return DaskDistributedBackend(client=self.client), -1 def configure(self, n_jobs=1, parallel=None, **backend_args): self.parallel = parallel return self.effective_n_jobs(n_jobs) def start_call(self): self._continue = True self.client.loop.add_callback(self._collect) self.call_data_futures = _WeakKeyDictionary() def stop_call(self): # The explicit call to clear is required to break a cycling reference # to the futures. self._continue = False # wait for the future collection routine (self._backend._collect) to # finish in order to limit asyncio warnings due to aborting _collect # during a following backend termination call time.sleep(0.01) self.call_data_futures.clear() def effective_n_jobs(self, n_jobs): effective_n_jobs = sum(self.client.ncores().values()) if effective_n_jobs != 0 or not self.wait_for_workers_timeout: return effective_n_jobs # If there is no worker, schedule a probe task to wait for the workers # to come up and be available. If the dask cluster is in adaptive mode # task might cause the cluster to provision some workers. try: self.client.submit(_joblib_probe_task).result( timeout=self.wait_for_workers_timeout ) except _TimeoutError as e: error_msg = ( "DaskDistributedBackend has no worker after {} seconds. " "Make sure that workers are started and can properly connect " "to the scheduler and increase the joblib/dask connection " "timeout with:\n\n" "parallel_config(backend='dask', wait_for_workers_timeout={})" ).format(self.wait_for_workers_timeout, max(10, 2 * self.wait_for_workers_timeout)) raise TimeoutError(error_msg) from e return sum(self.client.ncores().values()) async def _to_func_args(self, func): itemgetters = dict() # Futures that are dynamically generated during a single call to # Parallel.__call__. call_data_futures = getattr(self, 'call_data_futures', None) async def maybe_to_futures(args): out = [] for arg in args: arg_id = id(arg) if arg_id in itemgetters: out.append(itemgetters[arg_id]) continue f = self.data_futures.get(arg_id, None) if f is None and call_data_futures is not None: try: f = await call_data_futures[arg] except KeyError: pass if f is None: if is_weakrefable(arg) and sizeof(arg) > 1e3: # Automatically scatter large objects to some of # the workers to avoid duplicated data transfers. # Rely on automated inter-worker data stealing if # more workers need to reuse this data # concurrently. # set hash=False - nested scatter calls (i.e # calling client.scatter inside a dask worker) # using hash=True often raise CancelledError, # see dask/distributed#3703 _coro = self.client.scatter( arg, asynchronous=True, hash=False ) # Centralize the scattering of identical arguments # between concurrent apply_async callbacks by # exposing the running coroutine in # call_data_futures before it completes. t = asyncio.Task(_coro) call_data_futures[arg] = t f = await t if f is not None: out.append(f) else: out.append(arg) return out tasks = [] for f, args, kwargs in func.items: args = list(await maybe_to_futures(args)) kwargs = dict(zip(kwargs.keys(), await maybe_to_futures(kwargs.values()))) tasks.append((f, args, kwargs)) return (Batch(tasks), tasks) def apply_async(self, func, callback=None): cf_future = concurrent.futures.Future() cf_future.get = cf_future.result # achieve AsyncResult API async def f(func, callback): batch, tasks = await self._to_func_args(func) key = f'{repr(batch)}-{uuid4().hex}' dask_future = self.client.submit( _TracebackCapturingWrapper(batch), tasks=tasks, key=key, **self.submit_kwargs ) self.waiting_futures.add(dask_future) self._callbacks[dask_future] = callback self._results[dask_future] = cf_future self.client.loop.add_callback(f, func, callback) return cf_future def retrieve_result_callback(self, out): return _retrieve_traceback_capturing_wrapped_call(out) def abort_everything(self, ensure_ready=True): """ Tell the client to cancel any task submitted via this instance joblib.Parallel will never access those results """ with self.waiting_futures.lock: self.waiting_futures.futures.clear() while not self.waiting_futures.queue.empty(): self.waiting_futures.queue.get() @contextlib.contextmanager def retrieval_context(self): """Override ParallelBackendBase.retrieval_context to avoid deadlocks. This removes thread from the worker's thread pool (using 'secede'). Seceding avoids deadlock in nested parallelism settings. """ # See 'joblib.Parallel.__call__' and 'joblib.Parallel.retrieve' for how # this is used. if hasattr(thread_state, 'execution_state'): # we are in a worker. Secede to avoid deadlock. secede() yield if hasattr(thread_state, 'execution_state'): rejoin() PKaZZZ~�`�m�mjoblib/_memmapping_reducer.py""" Reducer using memory mapping for numpy arrays """ # Author: Thomas Moreau <thomas.moreau.2010@gmail.com> # Copyright: 2017, Thomas Moreau # License: BSD 3 clause from mmap import mmap import errno import os import stat import threading import atexit import tempfile import time import warnings import weakref from uuid import uuid4 from multiprocessing import util from pickle import whichmodule, loads, dumps, HIGHEST_PROTOCOL, PicklingError try: WindowsError except NameError: WindowsError = type(None) try: import numpy as np from numpy.lib.stride_tricks import as_strided except ImportError: np = None from .numpy_pickle import dump, load, load_temporary_memmap from .backports import make_memmap from .disk import delete_folder from .externals.loky.backend import resource_tracker # Some system have a ramdisk mounted by default, we can use it instead of /tmp # as the default folder to dump big arrays to share with subprocesses. SYSTEM_SHARED_MEM_FS = '/dev/shm' # Minimal number of bytes available on SYSTEM_SHARED_MEM_FS to consider using # it as the default folder to dump big arrays to share with subprocesses. SYSTEM_SHARED_MEM_FS_MIN_SIZE = int(2e9) # Folder and file permissions to chmod temporary files generated by the # memmapping pool. Only the owner of the Python process can access the # temporary files and folder. FOLDER_PERMISSIONS = stat.S_IRUSR | stat.S_IWUSR | stat.S_IXUSR FILE_PERMISSIONS = stat.S_IRUSR | stat.S_IWUSR # Set used in joblib workers, referencing the filenames of temporary memmaps # created by joblib to speed up data communication. In child processes, we add # a finalizer to these memmaps that sends a maybe_unlink call to the # resource_tracker, in order to free main memory as fast as possible. JOBLIB_MMAPS = set() def _log_and_unlink(filename): from .externals.loky.backend.resource_tracker import _resource_tracker util.debug( "[FINALIZER CALL] object mapping to {} about to be deleted," " decrementing the refcount of the file (pid: {})".format( os.path.basename(filename), os.getpid())) _resource_tracker.maybe_unlink(filename, "file") def add_maybe_unlink_finalizer(memmap): util.debug( "[FINALIZER ADD] adding finalizer to {} (id {}, filename {}, pid {})" "".format(type(memmap), id(memmap), os.path.basename(memmap.filename), os.getpid())) weakref.finalize(memmap, _log_and_unlink, memmap.filename) def unlink_file(filename): """Wrapper around os.unlink with a retry mechanism. The retry mechanism has been implemented primarily to overcome a race condition happening during the finalizer of a np.memmap: when a process holding the last reference to a mmap-backed np.memmap/np.array is about to delete this array (and close the reference), it sends a maybe_unlink request to the resource_tracker. This request can be processed faster than it takes for the last reference of the memmap to be closed, yielding (on Windows) a PermissionError in the resource_tracker loop. """ NUM_RETRIES = 10 for retry_no in range(1, NUM_RETRIES + 1): try: os.unlink(filename) break except PermissionError: util.debug( '[ResourceTracker] tried to unlink {}, got ' 'PermissionError'.format(filename) ) if retry_no == NUM_RETRIES: raise else: time.sleep(.2) except FileNotFoundError: # In case of a race condition when deleting the temporary folder, # avoid noisy FileNotFoundError exception in the resource tracker. pass resource_tracker._CLEANUP_FUNCS['file'] = unlink_file class _WeakArrayKeyMap: """A variant of weakref.WeakKeyDictionary for unhashable numpy arrays. This datastructure will be used with numpy arrays as obj keys, therefore we do not use the __get__ / __set__ methods to avoid any conflict with the numpy fancy indexing syntax. """ def __init__(self): self._data = {} def get(self, obj): ref, val = self._data[id(obj)] if ref() is not obj: # In case of race condition with on_destroy: could never be # triggered by the joblib tests with CPython. raise KeyError(obj) return val def set(self, obj, value): key = id(obj) try: ref, _ = self._data[key] if ref() is not obj: # In case of race condition with on_destroy: could never be # triggered by the joblib tests with CPython. raise KeyError(obj) except KeyError: # Insert the new entry in the mapping along with a weakref # callback to automatically delete the entry from the mapping # as soon as the object used as key is garbage collected. def on_destroy(_): del self._data[key] ref = weakref.ref(obj, on_destroy) self._data[key] = ref, value def __getstate__(self): raise PicklingError("_WeakArrayKeyMap is not pickleable") ############################################################################### # Support for efficient transient pickling of numpy data structures def _get_backing_memmap(a): """Recursively look up the original np.memmap instance base if any.""" b = getattr(a, 'base', None) if b is None: # TODO: check scipy sparse datastructure if scipy is installed # a nor its descendants do not have a memmap base return None elif isinstance(b, mmap): # a is already a real memmap instance. return a else: # Recursive exploration of the base ancestry return _get_backing_memmap(b) def _get_temp_dir(pool_folder_name, temp_folder=None): """Get the full path to a subfolder inside the temporary folder. Parameters ---------- pool_folder_name : str Sub-folder name used for the serialization of a pool instance. temp_folder: str, optional Folder to be used by the pool for memmapping large arrays for sharing memory with worker processes. If None, this will try in order: - a folder pointed by the JOBLIB_TEMP_FOLDER environment variable, - /dev/shm if the folder exists and is writable: this is a RAMdisk filesystem available by default on modern Linux distributions, - the default system temporary folder that can be overridden with TMP, TMPDIR or TEMP environment variables, typically /tmp under Unix operating systems. Returns ------- pool_folder : str full path to the temporary folder use_shared_mem : bool whether the temporary folder is written to the system shared memory folder or some other temporary folder. """ use_shared_mem = False if temp_folder is None: temp_folder = os.environ.get('JOBLIB_TEMP_FOLDER', None) if temp_folder is None: if os.path.exists(SYSTEM_SHARED_MEM_FS) and hasattr(os, 'statvfs'): try: shm_stats = os.statvfs(SYSTEM_SHARED_MEM_FS) available_nbytes = shm_stats.f_bsize * shm_stats.f_bavail if available_nbytes > SYSTEM_SHARED_MEM_FS_MIN_SIZE: # Try to see if we have write access to the shared mem # folder only if it is reasonably large (that is 2GB or # more). temp_folder = SYSTEM_SHARED_MEM_FS pool_folder = os.path.join(temp_folder, pool_folder_name) if not os.path.exists(pool_folder): os.makedirs(pool_folder) use_shared_mem = True except (IOError, OSError): # Missing rights in the /dev/shm partition, fallback to regular # temp folder. temp_folder = None if temp_folder is None: # Fallback to the default tmp folder, typically /tmp temp_folder = tempfile.gettempdir() temp_folder = os.path.abspath(os.path.expanduser(temp_folder)) pool_folder = os.path.join(temp_folder, pool_folder_name) return pool_folder, use_shared_mem def has_shareable_memory(a): """Return True if a is backed by some mmap buffer directly or not.""" return _get_backing_memmap(a) is not None def _strided_from_memmap(filename, dtype, mode, offset, order, shape, strides, total_buffer_len, unlink_on_gc_collect): """Reconstruct an array view on a memory mapped file.""" if mode == 'w+': # Do not zero the original data when unpickling mode = 'r+' if strides is None: # Simple, contiguous memmap return make_memmap( filename, dtype=dtype, shape=shape, mode=mode, offset=offset, order=order, unlink_on_gc_collect=unlink_on_gc_collect ) else: # For non-contiguous data, memmap the total enclosing buffer and then # extract the non-contiguous view with the stride-tricks API base = make_memmap( filename, dtype=dtype, shape=total_buffer_len, offset=offset, mode=mode, order=order, unlink_on_gc_collect=unlink_on_gc_collect ) return as_strided(base, shape=shape, strides=strides) def _reduce_memmap_backed(a, m): """Pickling reduction for memmap backed arrays. a is expected to be an instance of np.ndarray (or np.memmap) m is expected to be an instance of np.memmap on the top of the ``base`` attribute ancestry of a. ``m.base`` should be the real python mmap object. """ # offset that comes from the striding differences between a and m util.debug('[MEMMAP REDUCE] reducing a memmap-backed array ' '(shape, {}, pid: {})'.format(a.shape, os.getpid())) try: from numpy.lib.array_utils import byte_bounds except (ModuleNotFoundError, ImportError): # Backward-compat for numpy < 2.0 from numpy import byte_bounds a_start, a_end = byte_bounds(a) m_start = byte_bounds(m)[0] offset = a_start - m_start # offset from the backing memmap offset += m.offset if m.flags['F_CONTIGUOUS']: order = 'F' else: # The backing memmap buffer is necessarily contiguous hence C if not # Fortran order = 'C' if a.flags['F_CONTIGUOUS'] or a.flags['C_CONTIGUOUS']: # If the array is a contiguous view, no need to pass the strides strides = None total_buffer_len = None else: # Compute the total number of items to map from which the strided # view will be extracted. strides = a.strides total_buffer_len = (a_end - a_start) // a.itemsize return (_strided_from_memmap, (m.filename, a.dtype, m.mode, offset, order, a.shape, strides, total_buffer_len, False)) def reduce_array_memmap_backward(a): """reduce a np.array or a np.memmap from a child process""" m = _get_backing_memmap(a) if isinstance(m, np.memmap) and m.filename not in JOBLIB_MMAPS: # if a is backed by a memmaped file, reconstruct a using the # memmaped file. return _reduce_memmap_backed(a, m) else: # a is either a regular (not memmap-backed) numpy array, or an array # backed by a shared temporary file created by joblib. In the latter # case, in order to limit the lifespan of these temporary files, we # serialize the memmap as a regular numpy array, and decref the # file backing the memmap (done implicitly in a previously registered # finalizer, see ``unlink_on_gc_collect`` for more details) return ( loads, (dumps(np.asarray(a), protocol=HIGHEST_PROTOCOL), ) ) class ArrayMemmapForwardReducer(object): """Reducer callable to dump large arrays to memmap files. Parameters ---------- max_nbytes: int Threshold to trigger memmapping of large arrays to files created a folder. temp_folder_resolver: callable An callable in charge of resolving a temporary folder name where files for backing memmapped arrays are created. mmap_mode: 'r', 'r+' or 'c' Mode for the created memmap datastructure. See the documentation of numpy.memmap for more details. Note: 'w+' is coerced to 'r+' automatically to avoid zeroing the data on unpickling. verbose: int, optional, 0 by default If verbose > 0, memmap creations are logged. If verbose > 1, both memmap creations, reuse and array pickling are logged. prewarm: bool, optional, False by default. Force a read on newly memmapped array to make sure that OS pre-cache it memory. This can be useful to avoid concurrent disk access when the same data array is passed to different worker processes. """ def __init__(self, max_nbytes, temp_folder_resolver, mmap_mode, unlink_on_gc_collect, verbose=0, prewarm=True): self._max_nbytes = max_nbytes self._temp_folder_resolver = temp_folder_resolver self._mmap_mode = mmap_mode self.verbose = int(verbose) if prewarm == "auto": self._prewarm = not self._temp_folder.startswith( SYSTEM_SHARED_MEM_FS ) else: self._prewarm = prewarm self._prewarm = prewarm self._memmaped_arrays = _WeakArrayKeyMap() self._temporary_memmaped_filenames = set() self._unlink_on_gc_collect = unlink_on_gc_collect @property def _temp_folder(self): return self._temp_folder_resolver() def __reduce__(self): # The ArrayMemmapForwardReducer is passed to the children processes: it # needs to be pickled but the _WeakArrayKeyMap need to be skipped as # it's only guaranteed to be consistent with the parent process memory # garbage collection. # Although this reducer is pickled, it is not needed in its destination # process (child processes), as we only use this reducer to send # memmaps from the parent process to the children processes. For this # reason, we can afford skipping the resolver, (which would otherwise # be unpicklable), and pass it as None instead. args = (self._max_nbytes, None, self._mmap_mode, self._unlink_on_gc_collect) kwargs = { 'verbose': self.verbose, 'prewarm': self._prewarm, } return ArrayMemmapForwardReducer, args, kwargs def __call__(self, a): m = _get_backing_memmap(a) if m is not None and isinstance(m, np.memmap): # a is already backed by a memmap file, let's reuse it directly return _reduce_memmap_backed(a, m) if (not a.dtype.hasobject and self._max_nbytes is not None and a.nbytes > self._max_nbytes): # check that the folder exists (lazily create the pool temp folder # if required) try: os.makedirs(self._temp_folder) os.chmod(self._temp_folder, FOLDER_PERMISSIONS) except OSError as e: if e.errno != errno.EEXIST: raise e try: basename = self._memmaped_arrays.get(a) except KeyError: # Generate a new unique random filename. The process and thread # ids are only useful for debugging purpose and to make it # easier to cleanup orphaned files in case of hard process # kill (e.g. by "kill -9" or segfault). basename = "{}-{}-{}.pkl".format( os.getpid(), id(threading.current_thread()), uuid4().hex) self._memmaped_arrays.set(a, basename) filename = os.path.join(self._temp_folder, basename) # In case the same array with the same content is passed several # times to the pool subprocess children, serialize it only once is_new_memmap = filename not in self._temporary_memmaped_filenames # add the memmap to the list of temporary memmaps created by joblib self._temporary_memmaped_filenames.add(filename) if self._unlink_on_gc_collect: # Bump reference count of the memmap by 1 to account for # shared usage of the memmap by a child process. The # corresponding decref call will be executed upon calling # resource_tracker.maybe_unlink, registered as a finalizer in # the child. # the incref/decref calls here are only possible when the child # and the parent share the same resource_tracker. It is not the # case for the multiprocessing backend, but it does not matter # because unlinking a memmap from a child process is only # useful to control the memory usage of long-lasting child # processes, while the multiprocessing-based pools terminate # their workers at the end of a map() call. resource_tracker.register(filename, "file") if is_new_memmap: # Incref each temporary memmap created by joblib one extra # time. This means that these memmaps will only be deleted # once an extra maybe_unlink() is called, which is done once # all the jobs have completed (or been canceled) in the # Parallel._terminate_backend() method. resource_tracker.register(filename, "file") if not os.path.exists(filename): util.debug( "[ARRAY DUMP] Pickling new array (shape={}, dtype={}) " "creating a new memmap at {}".format( a.shape, a.dtype, filename)) for dumped_filename in dump(a, filename): os.chmod(dumped_filename, FILE_PERMISSIONS) if self._prewarm: # Warm up the data by accessing it. This operation ensures # that the disk access required to create the memmapping # file are performed in the reducing process and avoids # concurrent memmap creation in multiple children # processes. load(filename, mmap_mode=self._mmap_mode).max() else: util.debug( "[ARRAY DUMP] Pickling known array (shape={}, dtype={}) " "reusing memmap file: {}".format( a.shape, a.dtype, os.path.basename(filename))) # The worker process will use joblib.load to memmap the data return ( (load_temporary_memmap, (filename, self._mmap_mode, self._unlink_on_gc_collect)) ) else: # do not convert a into memmap, let pickler do its usual copy with # the default system pickler util.debug( '[ARRAY DUMP] Pickling array (NO MEMMAPPING) (shape={}, ' ' dtype={}).'.format(a.shape, a.dtype)) return (loads, (dumps(a, protocol=HIGHEST_PROTOCOL),)) def get_memmapping_reducers( forward_reducers=None, backward_reducers=None, temp_folder_resolver=None, max_nbytes=1e6, mmap_mode='r', verbose=0, prewarm=False, unlink_on_gc_collect=True, **kwargs): """Construct a pair of memmapping reducer linked to a tmpdir. This function manage the creation and the clean up of the temporary folders underlying the memory maps and should be use to get the reducers necessary to construct joblib pool or executor. """ if forward_reducers is None: forward_reducers = dict() if backward_reducers is None: backward_reducers = dict() if np is not None: # Register smart numpy.ndarray reducers that detects memmap backed # arrays and that is also able to dump to memmap large in-memory # arrays over the max_nbytes threshold forward_reduce_ndarray = ArrayMemmapForwardReducer( max_nbytes, temp_folder_resolver, mmap_mode, unlink_on_gc_collect, verbose, prewarm=prewarm) forward_reducers[np.ndarray] = forward_reduce_ndarray forward_reducers[np.memmap] = forward_reduce_ndarray # Communication from child process to the parent process always # pickles in-memory numpy.ndarray without dumping them as memmap # to avoid confusing the caller and make it tricky to collect the # temporary folder backward_reducers[np.ndarray] = reduce_array_memmap_backward backward_reducers[np.memmap] = reduce_array_memmap_backward return forward_reducers, backward_reducers class TemporaryResourcesManager(object): """Stateful object able to manage temporary folder and pickles It exposes: - a per-context folder name resolving API that memmap-based reducers will rely on to know where to pickle the temporary memmaps - a temporary file/folder management API that internally uses the resource_tracker. """ def __init__(self, temp_folder_root=None, context_id=None): self._current_temp_folder = None self._temp_folder_root = temp_folder_root self._use_shared_mem = None self._cached_temp_folders = dict() self._id = uuid4().hex self._finalizers = {} if context_id is None: # It would be safer to not assign a default context id (less silent # bugs), but doing this while maintaining backward compatibility # with the previous, context-unaware version get_memmaping_executor # exposes too many low-level details. context_id = uuid4().hex self.set_current_context(context_id) def set_current_context(self, context_id): self._current_context_id = context_id self.register_new_context(context_id) def register_new_context(self, context_id): # Prepare a sub-folder name specific to a context (usually a unique id # generated by each instance of the Parallel class). Do not create in # advance to spare FS write access if no array is to be dumped). if context_id in self._cached_temp_folders: return else: # During its lifecycle, one Parallel object can have several # executors associated to it (for instance, if a loky worker raises # an exception, joblib shutdowns the executor and instantly # recreates a new one before raising the error - see # ``ensure_ready``. Because we don't want two executors tied to # the same Parallel object (and thus the same context id) to # register/use/delete the same folder, we also add an id specific # to the current Manager (and thus specific to its associated # executor) to the folder name. new_folder_name = ( "joblib_memmapping_folder_{}_{}_{}".format( os.getpid(), self._id, context_id) ) new_folder_path, _ = _get_temp_dir( new_folder_name, self._temp_folder_root ) self.register_folder_finalizer(new_folder_path, context_id) self._cached_temp_folders[context_id] = new_folder_path def resolve_temp_folder_name(self): """Return a folder name specific to the currently activated context""" return self._cached_temp_folders[self._current_context_id] # resource management API def register_folder_finalizer(self, pool_subfolder, context_id): # Register the garbage collector at program exit in case caller forgets # to call terminate explicitly: note we do not pass any reference to # ensure that this callback won't prevent garbage collection of # parallel instance and related file handler resources such as POSIX # semaphores and pipes pool_module_name = whichmodule(delete_folder, 'delete_folder') resource_tracker.register(pool_subfolder, "folder") def _cleanup(): # In some cases the Python runtime seems to set delete_folder to # None just before exiting when accessing the delete_folder # function from the closure namespace. So instead we reimport # the delete_folder function explicitly. # https://github.com/joblib/joblib/issues/328 # We cannot just use from 'joblib.pool import delete_folder' # because joblib should only use relative imports to allow # easy vendoring. delete_folder = __import__( pool_module_name, fromlist=['delete_folder'] ).delete_folder try: delete_folder(pool_subfolder, allow_non_empty=True) resource_tracker.unregister(pool_subfolder, "folder") except OSError: warnings.warn("Failed to delete temporary folder: {}" .format(pool_subfolder)) self._finalizers[context_id] = atexit.register(_cleanup) def _clean_temporary_resources(self, context_id=None, force=False, allow_non_empty=False): """Clean temporary resources created by a process-based pool""" if context_id is None: # Iterates over a copy of the cache keys to avoid Error due to # iterating over a changing size dictionary. for context_id in list(self._cached_temp_folders): self._clean_temporary_resources( context_id, force=force, allow_non_empty=allow_non_empty ) else: temp_folder = self._cached_temp_folders.get(context_id) if temp_folder and os.path.exists(temp_folder): for filename in os.listdir(temp_folder): if force: # Some workers have failed and the ref counted might # be off. The workers should have shut down by this # time so forcefully clean up the files. resource_tracker.unregister( os.path.join(temp_folder, filename), "file" ) else: resource_tracker.maybe_unlink( os.path.join(temp_folder, filename), "file" ) # When forcing clean-up, try to delete the folder even if some # files are still in it. Otherwise, try to delete the folder allow_non_empty |= force # Clean up the folder if possible, either if it is empty or # if none of the files in it are in used and allow_non_empty. try: delete_folder( temp_folder, allow_non_empty=allow_non_empty ) # Forget the folder once it has been deleted self._cached_temp_folders.pop(context_id, None) resource_tracker.unregister(temp_folder, "folder") # Also cancel the finalizers that gets triggered at gc. finalizer = self._finalizers.pop(context_id, None) if finalizer is not None: atexit.unregister(finalizer) except OSError: # Temporary folder cannot be deleted right now. # This folder will be cleaned up by an atexit # finalizer registered by the memmapping_reducer. pass PKaZZZ��1���"joblib/_multiprocessing_helpers.py"""Helper module to factorize the conditional multiprocessing import logic We use a distinct module to simplify import statements and avoid introducing circular dependencies (for instance for the assert_spawning name). """ import os import warnings # Obtain possible configuration from the environment, assuming 1 (on) # by default, upon 0 set to None. Should instructively fail if some non # 0/1 value is set. mp = int(os.environ.get('JOBLIB_MULTIPROCESSING', 1)) or None if mp: try: import multiprocessing as mp import _multiprocessing # noqa except ImportError: mp = None # 2nd stage: validate that locking is available on the system and # issue a warning if not if mp is not None: try: # try to create a named semaphore using SemLock to make sure they are # available on this platform. We use the low level object # _multiprocessing.SemLock to avoid spawning a resource tracker on # Unix system or changing the default backend. import tempfile from _multiprocessing import SemLock _rand = tempfile._RandomNameSequence() for i in range(100): try: name = '/joblib-{}-{}' .format( os.getpid(), next(_rand)) _sem = SemLock(0, 0, 1, name=name, unlink=True) del _sem # cleanup break except FileExistsError as e: # pragma: no cover if i >= 99: raise FileExistsError( 'cannot find name for semaphore') from e except (FileExistsError, AttributeError, ImportError, OSError) as e: mp = None warnings.warn('%s. joblib will operate in serial mode' % (e,)) # 3rd stage: backward compat for the assert_spawning helper if mp is not None: from multiprocessing.context import assert_spawning else: assert_spawning = None PKaZZZ���c�cjoblib/_parallel_backends.py""" Backends for embarrassingly parallel code. """ import gc import os import warnings import threading import contextlib from abc import ABCMeta, abstractmethod from ._utils import ( _TracebackCapturingWrapper, _retrieve_traceback_capturing_wrapped_call ) from ._multiprocessing_helpers import mp if mp is not None: from .pool import MemmappingPool from multiprocessing.pool import ThreadPool from .executor import get_memmapping_executor # Import loky only if multiprocessing is present from .externals.loky import process_executor, cpu_count from .externals.loky.process_executor import ShutdownExecutorError class ParallelBackendBase(metaclass=ABCMeta): """Helper abc which defines all methods a ParallelBackend must implement""" supports_inner_max_num_threads = False supports_retrieve_callback = False default_n_jobs = 1 @property def supports_return_generator(self): return self.supports_retrieve_callback @property def supports_timeout(self): return self.supports_retrieve_callback nesting_level = None def __init__(self, nesting_level=None, inner_max_num_threads=None, **kwargs): super().__init__(**kwargs) self.nesting_level = nesting_level self.inner_max_num_threads = inner_max_num_threads MAX_NUM_THREADS_VARS = [ 'OMP_NUM_THREADS', 'OPENBLAS_NUM_THREADS', 'MKL_NUM_THREADS', 'BLIS_NUM_THREADS', 'VECLIB_MAXIMUM_THREADS', 'NUMBA_NUM_THREADS', 'NUMEXPR_NUM_THREADS', ] TBB_ENABLE_IPC_VAR = "ENABLE_IPC" @abstractmethod def effective_n_jobs(self, n_jobs): """Determine the number of jobs that can actually run in parallel n_jobs is the number of workers requested by the callers. Passing n_jobs=-1 means requesting all available workers for instance matching the number of CPU cores on the worker host(s). This method should return a guesstimate of the number of workers that can actually perform work concurrently. The primary use case is to make it possible for the caller to know in how many chunks to slice the work. In general working on larger data chunks is more efficient (less scheduling overhead and better use of CPU cache prefetching heuristics) as long as all the workers have enough work to do. """ @abstractmethod def apply_async(self, func, callback=None): """Schedule a func to be run""" def retrieve_result_callback(self, out): """Called within the callback function passed in apply_async. The argument of this function is the argument given to a callback in the considered backend. It is supposed to return the outcome of a task if it succeeded or raise the exception if it failed. """ def configure(self, n_jobs=1, parallel=None, prefer=None, require=None, **backend_args): """Reconfigure the backend and return the number of workers. This makes it possible to reuse an existing backend instance for successive independent calls to Parallel with different parameters. """ self.parallel = parallel return self.effective_n_jobs(n_jobs) def start_call(self): """Call-back method called at the beginning of a Parallel call""" def stop_call(self): """Call-back method called at the end of a Parallel call""" def terminate(self): """Shutdown the workers and free the shared memory.""" def compute_batch_size(self): """Determine the optimal batch size""" return 1 def batch_completed(self, batch_size, duration): """Callback indicate how long it took to run a batch""" def get_exceptions(self): """List of exception types to be captured.""" return [] def abort_everything(self, ensure_ready=True): """Abort any running tasks This is called when an exception has been raised when executing a task and all the remaining tasks will be ignored and can therefore be aborted to spare computation resources. If ensure_ready is True, the backend should be left in an operating state as future tasks might be re-submitted via that same backend instance. If ensure_ready is False, the implementer of this method can decide to leave the backend in a closed / terminated state as no new task are expected to be submitted to this backend. Setting ensure_ready to False is an optimization that can be leveraged when aborting tasks via killing processes from a local process pool managed by the backend it-self: if we expect no new tasks, there is no point in re-creating new workers. """ # Does nothing by default: to be overridden in subclasses when # canceling tasks is possible. pass def get_nested_backend(self): """Backend instance to be used by nested Parallel calls. By default a thread-based backend is used for the first level of nesting. Beyond, switch to sequential backend to avoid spawning too many threads on the host. """ nesting_level = getattr(self, 'nesting_level', 0) + 1 if nesting_level > 1: return SequentialBackend(nesting_level=nesting_level), None else: return ThreadingBackend(nesting_level=nesting_level), None @contextlib.contextmanager def retrieval_context(self): """Context manager to manage an execution context. Calls to Parallel.retrieve will be made inside this context. By default, this does nothing. It may be useful for subclasses to handle nested parallelism. In particular, it may be required to avoid deadlocks if a backend manages a fixed number of workers, when those workers may be asked to do nested Parallel calls. Without 'retrieval_context' this could lead to deadlock, as all the workers managed by the backend may be "busy" waiting for the nested parallel calls to finish, but the backend has no free workers to execute those tasks. """ yield def _prepare_worker_env(self, n_jobs): """Return environment variables limiting threadpools in external libs. This function return a dict containing environment variables to pass when creating a pool of process. These environment variables limit the number of threads to `n_threads` for OpenMP, MKL, Accelerated and OpenBLAS libraries in the child processes. """ explicit_n_threads = self.inner_max_num_threads default_n_threads = max(cpu_count() // n_jobs, 1) # Set the inner environment variables to self.inner_max_num_threads if # it is given. Else, default to cpu_count // n_jobs unless the variable # is already present in the parent process environment. env = {} for var in self.MAX_NUM_THREADS_VARS: if explicit_n_threads is None: var_value = os.environ.get(var, default_n_threads) else: var_value = explicit_n_threads env[var] = str(var_value) if self.TBB_ENABLE_IPC_VAR not in os.environ: # To avoid over-subscription when using TBB, let the TBB schedulers # use Inter Process Communication to coordinate: env[self.TBB_ENABLE_IPC_VAR] = "1" return env @staticmethod def in_main_thread(): return isinstance(threading.current_thread(), threading._MainThread) class SequentialBackend(ParallelBackendBase): """A ParallelBackend which will execute all batches sequentially. Does not use/create any threading objects, and hence has minimal overhead. Used when n_jobs == 1. """ uses_threads = True supports_timeout = False supports_retrieve_callback = False supports_sharedmem = True def effective_n_jobs(self, n_jobs): """Determine the number of jobs which are going to run in parallel""" if n_jobs == 0: raise ValueError('n_jobs == 0 in Parallel has no meaning') return 1 def apply_async(self, func, callback=None): """Schedule a func to be run""" raise RuntimeError("Should never be called for SequentialBackend.") def retrieve_result_callback(self, out): raise RuntimeError("Should never be called for SequentialBackend.") def get_nested_backend(self): # import is not top level to avoid cyclic import errors. from .parallel import get_active_backend # SequentialBackend should neither change the nesting level, the # default backend or the number of jobs. Just return the current one. return get_active_backend() class PoolManagerMixin(object): """A helper class for managing pool of workers.""" _pool = None def effective_n_jobs(self, n_jobs): """Determine the number of jobs which are going to run in parallel""" if n_jobs == 0: raise ValueError('n_jobs == 0 in Parallel has no meaning') elif mp is None or n_jobs is None: # multiprocessing is not available or disabled, fallback # to sequential mode return 1 elif n_jobs < 0: n_jobs = max(cpu_count() + 1 + n_jobs, 1) return n_jobs def terminate(self): """Shutdown the process or thread pool""" if self._pool is not None: self._pool.close() self._pool.terminate() # terminate does a join() self._pool = None def _get_pool(self): """Used by apply_async to make it possible to implement lazy init""" return self._pool def apply_async(self, func, callback=None): """Schedule a func to be run""" # Here, we need a wrapper to avoid crashes on KeyboardInterruptErrors. # We also call the callback on error, to make sure the pool does not # wait on crashed jobs. return self._get_pool().apply_async( _TracebackCapturingWrapper(func), (), callback=callback, error_callback=callback ) def retrieve_result_callback(self, out): """Mimic concurrent.futures results, raising an error if needed.""" return _retrieve_traceback_capturing_wrapped_call(out) def abort_everything(self, ensure_ready=True): """Shutdown the pool and restart a new one with the same parameters""" self.terminate() if ensure_ready: self.configure(n_jobs=self.parallel.n_jobs, parallel=self.parallel, **self.parallel._backend_args) class AutoBatchingMixin(object): """A helper class for automagically batching jobs.""" # In seconds, should be big enough to hide multiprocessing dispatching # overhead. # This settings was found by running benchmarks/bench_auto_batching.py # with various parameters on various platforms. MIN_IDEAL_BATCH_DURATION = .2 # Should not be too high to avoid stragglers: long jobs running alone # on a single worker while other workers have no work to process any more. MAX_IDEAL_BATCH_DURATION = 2 # Batching counters default values _DEFAULT_EFFECTIVE_BATCH_SIZE = 1 _DEFAULT_SMOOTHED_BATCH_DURATION = 0.0 def __init__(self, **kwargs): super().__init__(**kwargs) self._effective_batch_size = self._DEFAULT_EFFECTIVE_BATCH_SIZE self._smoothed_batch_duration = self._DEFAULT_SMOOTHED_BATCH_DURATION def compute_batch_size(self): """Determine the optimal batch size""" old_batch_size = self._effective_batch_size batch_duration = self._smoothed_batch_duration if (batch_duration > 0 and batch_duration < self.MIN_IDEAL_BATCH_DURATION): # The current batch size is too small: the duration of the # processing of a batch of task is not large enough to hide # the scheduling overhead. ideal_batch_size = int(old_batch_size * self.MIN_IDEAL_BATCH_DURATION / batch_duration) # Multiply by two to limit oscilations between min and max. ideal_batch_size *= 2 # dont increase the batch size too fast to limit huge batch sizes # potentially leading to starving worker batch_size = min(2 * old_batch_size, ideal_batch_size) batch_size = max(batch_size, 1) self._effective_batch_size = batch_size if self.parallel.verbose >= 10: self.parallel._print( f"Batch computation too fast ({batch_duration}s.) " f"Setting batch_size={batch_size}." ) elif (batch_duration > self.MAX_IDEAL_BATCH_DURATION and old_batch_size >= 2): # The current batch size is too big. If we schedule overly long # running batches some CPUs might wait with nothing left to do # while a couple of CPUs a left processing a few long running # batches. Better reduce the batch size a bit to limit the # likelihood of scheduling such stragglers. # decrease the batch size quickly to limit potential starving ideal_batch_size = int( old_batch_size * self.MIN_IDEAL_BATCH_DURATION / batch_duration ) # Multiply by two to limit oscilations between min and max. batch_size = max(2 * ideal_batch_size, 1) self._effective_batch_size = batch_size if self.parallel.verbose >= 10: self.parallel._print( f"Batch computation too slow ({batch_duration}s.) " f"Setting batch_size={batch_size}." ) else: # No batch size adjustment batch_size = old_batch_size if batch_size != old_batch_size: # Reset estimation of the smoothed mean batch duration: this # estimate is updated in the multiprocessing apply_async # CallBack as long as the batch_size is constant. Therefore # we need to reset the estimate whenever we re-tune the batch # size. self._smoothed_batch_duration = \ self._DEFAULT_SMOOTHED_BATCH_DURATION return batch_size def batch_completed(self, batch_size, duration): """Callback indicate how long it took to run a batch""" if batch_size == self._effective_batch_size: # Update the smoothed streaming estimate of the duration of a batch # from dispatch to completion old_duration = self._smoothed_batch_duration if old_duration == self._DEFAULT_SMOOTHED_BATCH_DURATION: # First record of duration for this batch size after the last # reset. new_duration = duration else: # Update the exponentially weighted average of the duration of # batch for the current effective size. new_duration = 0.8 * old_duration + 0.2 * duration self._smoothed_batch_duration = new_duration def reset_batch_stats(self): """Reset batch statistics to default values. This avoids interferences with future jobs. """ self._effective_batch_size = self._DEFAULT_EFFECTIVE_BATCH_SIZE self._smoothed_batch_duration = self._DEFAULT_SMOOTHED_BATCH_DURATION class ThreadingBackend(PoolManagerMixin, ParallelBackendBase): """A ParallelBackend which will use a thread pool to execute batches in. This is a low-overhead backend but it suffers from the Python Global Interpreter Lock if the called function relies a lot on Python objects. Mostly useful when the execution bottleneck is a compiled extension that explicitly releases the GIL (for instance a Cython loop wrapped in a "with nogil" block or an expensive call to a library such as NumPy). The actual thread pool is lazily initialized: the actual thread pool construction is delayed to the first call to apply_async. ThreadingBackend is used as the default backend for nested calls. """ supports_retrieve_callback = True uses_threads = True supports_sharedmem = True def configure(self, n_jobs=1, parallel=None, **backend_args): """Build a process or thread pool and return the number of workers""" n_jobs = self.effective_n_jobs(n_jobs) if n_jobs == 1: # Avoid unnecessary overhead and use sequential backend instead. raise FallbackToBackend( SequentialBackend(nesting_level=self.nesting_level)) self.parallel = parallel self._n_jobs = n_jobs return n_jobs def _get_pool(self): """Lazily initialize the thread pool The actual pool of worker threads is only initialized at the first call to apply_async. """ if self._pool is None: self._pool = ThreadPool(self._n_jobs) return self._pool class MultiprocessingBackend(PoolManagerMixin, AutoBatchingMixin, ParallelBackendBase): """A ParallelBackend which will use a multiprocessing.Pool. Will introduce some communication and memory overhead when exchanging input and output data with the with the worker Python processes. However, does not suffer from the Python Global Interpreter Lock. """ supports_retrieve_callback = True supports_return_generator = False def effective_n_jobs(self, n_jobs): """Determine the number of jobs which are going to run in parallel. This also checks if we are attempting to create a nested parallel loop. """ if mp is None: return 1 if mp.current_process().daemon: # Daemonic processes cannot have children if n_jobs != 1: if inside_dask_worker(): msg = ( "Inside a Dask worker with daemon=True, " "setting n_jobs=1.\nPossible work-arounds:\n" "- dask.config.set(" "{'distributed.worker.daemon': False})" "- set the environment variable " "DASK_DISTRIBUTED__WORKER__DAEMON=False\n" "before creating your Dask cluster." ) else: msg = ( 'Multiprocessing-backed parallel loops ' 'cannot be nested, setting n_jobs=1' ) warnings.warn(msg, stacklevel=3) return 1 if process_executor._CURRENT_DEPTH > 0: # Mixing loky and multiprocessing in nested loop is not supported if n_jobs != 1: warnings.warn( 'Multiprocessing-backed parallel loops cannot be nested,' ' below loky, setting n_jobs=1', stacklevel=3) return 1 elif not (self.in_main_thread() or self.nesting_level == 0): # Prevent posix fork inside in non-main posix threads if n_jobs != 1: warnings.warn( 'Multiprocessing-backed parallel loops cannot be nested' ' below threads, setting n_jobs=1', stacklevel=3) return 1 return super(MultiprocessingBackend, self).effective_n_jobs(n_jobs) def configure(self, n_jobs=1, parallel=None, prefer=None, require=None, **memmappingpool_args): """Build a process or thread pool and return the number of workers""" n_jobs = self.effective_n_jobs(n_jobs) if n_jobs == 1: raise FallbackToBackend( SequentialBackend(nesting_level=self.nesting_level)) # Make sure to free as much memory as possible before forking gc.collect() self._pool = MemmappingPool(n_jobs, **memmappingpool_args) self.parallel = parallel return n_jobs def terminate(self): """Shutdown the process or thread pool""" super(MultiprocessingBackend, self).terminate() self.reset_batch_stats() class LokyBackend(AutoBatchingMixin, ParallelBackendBase): """Managing pool of workers with loky instead of multiprocessing.""" supports_retrieve_callback = True supports_inner_max_num_threads = True def configure(self, n_jobs=1, parallel=None, prefer=None, require=None, idle_worker_timeout=300, **memmappingexecutor_args): """Build a process executor and return the number of workers""" n_jobs = self.effective_n_jobs(n_jobs) if n_jobs == 1: raise FallbackToBackend( SequentialBackend(nesting_level=self.nesting_level)) self._workers = get_memmapping_executor( n_jobs, timeout=idle_worker_timeout, env=self._prepare_worker_env(n_jobs=n_jobs), context_id=parallel._id, **memmappingexecutor_args) self.parallel = parallel return n_jobs def effective_n_jobs(self, n_jobs): """Determine the number of jobs which are going to run in parallel""" if n_jobs == 0: raise ValueError('n_jobs == 0 in Parallel has no meaning') elif mp is None or n_jobs is None: # multiprocessing is not available or disabled, fallback # to sequential mode return 1 elif mp.current_process().daemon: # Daemonic processes cannot have children if n_jobs != 1: if inside_dask_worker(): msg = ( "Inside a Dask worker with daemon=True, " "setting n_jobs=1.\nPossible work-arounds:\n" "- dask.config.set(" "{'distributed.worker.daemon': False})\n" "- set the environment variable " "DASK_DISTRIBUTED__WORKER__DAEMON=False\n" "before creating your Dask cluster." ) else: msg = ( 'Loky-backed parallel loops cannot be called in a' ' multiprocessing, setting n_jobs=1' ) warnings.warn(msg, stacklevel=3) return 1 elif not (self.in_main_thread() or self.nesting_level == 0): # Prevent posix fork inside in non-main posix threads if n_jobs != 1: warnings.warn( 'Loky-backed parallel loops cannot be nested below ' 'threads, setting n_jobs=1', stacklevel=3) return 1 elif n_jobs < 0: n_jobs = max(cpu_count() + 1 + n_jobs, 1) return n_jobs def apply_async(self, func, callback=None): """Schedule a func to be run""" future = self._workers.submit(func) if callback is not None: future.add_done_callback(callback) return future def retrieve_result_callback(self, out): try: return out.result() except ShutdownExecutorError: raise RuntimeError( "The executor underlying Parallel has been shutdown. " "This is likely due to the garbage collection of a previous " "generator from a call to Parallel with return_as='generator'." " Make sure the generator is not garbage collected when " "submitting a new job or that it is first properly exhausted." ) def terminate(self): if self._workers is not None: # Don't terminate the workers as we want to reuse them in later # calls, but cleanup the temporary resources that the Parallel call # created. This 'hack' requires a private, low-level operation. self._workers._temp_folder_manager._clean_temporary_resources( context_id=self.parallel._id, force=False ) self._workers = None self.reset_batch_stats() def abort_everything(self, ensure_ready=True): """Shutdown the workers and restart a new one with the same parameters """ self._workers.terminate(kill_workers=True) self._workers = None if ensure_ready: self.configure(n_jobs=self.parallel.n_jobs, parallel=self.parallel) class FallbackToBackend(Exception): """Raised when configuration should fallback to another backend""" def __init__(self, backend): self.backend = backend def inside_dask_worker(): """Check whether the current function is executed inside a Dask worker. """ # This function can not be in joblib._dask because there would be a # circular import: # _dask imports _parallel_backend that imports _dask ... try: from distributed import get_worker except ImportError: return False try: get_worker() return True except ValueError: return False PKaZZZD� p+A+Ajoblib/_store_backends.py"""Storage providers backends for Memory caching.""" from pickle import PicklingError import re import os import os.path import datetime import json import shutil import time import warnings import collections import operator import threading from abc import ABCMeta, abstractmethod from .backports import concurrency_safe_rename from .disk import mkdirp, memstr_to_bytes, rm_subdirs from .logger import format_time from . import numpy_pickle CacheItemInfo = collections.namedtuple('CacheItemInfo', 'path size last_access') class CacheWarning(Warning): """Warning to capture dump failures except for PicklingError.""" pass def concurrency_safe_write(object_to_write, filename, write_func): """Writes an object into a unique file in a concurrency-safe way.""" thread_id = id(threading.current_thread()) temporary_filename = '{}.thread-{}-pid-{}'.format( filename, thread_id, os.getpid()) write_func(object_to_write, temporary_filename) return temporary_filename class StoreBackendBase(metaclass=ABCMeta): """Helper Abstract Base Class which defines all methods that a StorageBackend must implement.""" location = None @abstractmethod def _open_item(self, f, mode): """Opens an item on the store and return a file-like object. This method is private and only used by the StoreBackendMixin object. Parameters ---------- f: a file-like object The file-like object where an item is stored and retrieved mode: string, optional the mode in which the file-like object is opened allowed valued are 'rb', 'wb' Returns ------- a file-like object """ @abstractmethod def _item_exists(self, location): """Checks if an item location exists in the store. This method is private and only used by the StoreBackendMixin object. Parameters ---------- location: string The location of an item. On a filesystem, this corresponds to the absolute path, including the filename, of a file. Returns ------- True if the item exists, False otherwise """ @abstractmethod def _move_item(self, src, dst): """Moves an item from src to dst in the store. This method is private and only used by the StoreBackendMixin object. Parameters ---------- src: string The source location of an item dst: string The destination location of an item """ @abstractmethod def create_location(self, location): """Creates a location on the store. Parameters ---------- location: string The location in the store. On a filesystem, this corresponds to a directory. """ @abstractmethod def clear_location(self, location): """Clears a location on the store. Parameters ---------- location: string The location in the store. On a filesystem, this corresponds to a directory or a filename absolute path """ @abstractmethod def get_items(self): """Returns the whole list of items available in the store. Returns ------- The list of items identified by their ids (e.g filename in a filesystem). """ @abstractmethod def configure(self, location, verbose=0, backend_options=dict()): """Configures the store. Parameters ---------- location: string The base location used by the store. On a filesystem, this corresponds to a directory. verbose: int The level of verbosity of the store backend_options: dict Contains a dictionary of named parameters used to configure the store backend. """ class StoreBackendMixin(object): """Class providing all logic for managing the store in a generic way. The StoreBackend subclass has to implement 3 methods: create_location, clear_location and configure. The StoreBackend also has to provide a private _open_item, _item_exists and _move_item methods. The _open_item method has to have the same signature as the builtin open and return a file-like object. """ def load_item(self, call_id, verbose=1, timestamp=None, metadata=None): """Load an item from the store given its id as a list of str.""" full_path = os.path.join(self.location, *call_id) if verbose > 1: ts_string = ('{: <16}'.format(format_time(time.time() - timestamp)) if timestamp is not None else '') signature = os.path.basename(call_id[0]) if metadata is not None and 'input_args' in metadata: kwargs = ', '.join('{}={}'.format(*item) for item in metadata['input_args'].items()) signature += '({})'.format(kwargs) msg = '[Memory]{}: Loading {}'.format(ts_string, signature) if verbose < 10: print('{0}...'.format(msg)) else: print('{0} from {1}'.format(msg, full_path)) mmap_mode = (None if not hasattr(self, 'mmap_mode') else self.mmap_mode) filename = os.path.join(full_path, 'output.pkl') if not self._item_exists(filename): raise KeyError("Non-existing item (may have been " "cleared).\nFile %s does not exist" % filename) # file-like object cannot be used when mmap_mode is set if mmap_mode is None: with self._open_item(filename, "rb") as f: item = numpy_pickle.load(f) else: item = numpy_pickle.load(filename, mmap_mode=mmap_mode) return item def dump_item(self, call_id, item, verbose=1): """Dump an item in the store at the id given as a list of str.""" try: item_path = os.path.join(self.location, *call_id) if not self._item_exists(item_path): self.create_location(item_path) filename = os.path.join(item_path, 'output.pkl') if verbose > 10: print('Persisting in %s' % item_path) def write_func(to_write, dest_filename): with self._open_item(dest_filename, "wb") as f: try: numpy_pickle.dump(to_write, f, compress=self.compress) except PicklingError as e: # TODO(1.5) turn into error warnings.warn( "Unable to cache to disk: failed to pickle " "output. In version 1.5 this will raise an " f"exception. Exception: {e}.", FutureWarning ) self._concurrency_safe_write(item, filename, write_func) except Exception as e: # noqa: E722 warnings.warn( "Unable to cache to disk. Possibly a race condition in the " f"creation of the directory. Exception: {e}.", CacheWarning ) def clear_item(self, call_id): """Clear the item at the id, given as a list of str.""" item_path = os.path.join(self.location, *call_id) if self._item_exists(item_path): self.clear_location(item_path) def contains_item(self, call_id): """Check if there is an item at the id, given as a list of str.""" item_path = os.path.join(self.location, *call_id) filename = os.path.join(item_path, 'output.pkl') return self._item_exists(filename) def get_item_info(self, call_id): """Return information about item.""" return {'location': os.path.join(self.location, *call_id)} def get_metadata(self, call_id): """Return actual metadata of an item.""" try: item_path = os.path.join(self.location, *call_id) filename = os.path.join(item_path, 'metadata.json') with self._open_item(filename, 'rb') as f: return json.loads(f.read().decode('utf-8')) except: # noqa: E722 return {} def store_metadata(self, call_id, metadata): """Store metadata of a computation.""" try: item_path = os.path.join(self.location, *call_id) self.create_location(item_path) filename = os.path.join(item_path, 'metadata.json') def write_func(to_write, dest_filename): with self._open_item(dest_filename, "wb") as f: f.write(json.dumps(to_write).encode('utf-8')) self._concurrency_safe_write(metadata, filename, write_func) except: # noqa: E722 pass def contains_path(self, call_id): """Check cached function is available in store.""" func_path = os.path.join(self.location, *call_id) return self.object_exists(func_path) def clear_path(self, call_id): """Clear all items with a common path in the store.""" func_path = os.path.join(self.location, *call_id) if self._item_exists(func_path): self.clear_location(func_path) def store_cached_func_code(self, call_id, func_code=None): """Store the code of the cached function.""" func_path = os.path.join(self.location, *call_id) if not self._item_exists(func_path): self.create_location(func_path) if func_code is not None: filename = os.path.join(func_path, "func_code.py") with self._open_item(filename, 'wb') as f: f.write(func_code.encode('utf-8')) def get_cached_func_code(self, call_id): """Store the code of the cached function.""" filename = os.path.join(self.location, *call_id, 'func_code.py') try: with self._open_item(filename, 'rb') as f: return f.read().decode('utf-8') except: # noqa: E722 raise def get_cached_func_info(self, call_id): """Return information related to the cached function if it exists.""" return {'location': os.path.join(self.location, *call_id)} def clear(self): """Clear the whole store content.""" self.clear_location(self.location) def enforce_store_limits( self, bytes_limit, items_limit=None, age_limit=None ): """ Remove the store's oldest files to enforce item, byte, and age limits. """ items_to_delete = self._get_items_to_delete( bytes_limit, items_limit, age_limit ) for item in items_to_delete: if self.verbose > 10: print('Deleting item {0}'.format(item)) try: self.clear_location(item.path) except OSError: # Even with ignore_errors=True shutil.rmtree can raise OSError # with: # [Errno 116] Stale file handle if another process has deleted # the folder already. pass def _get_items_to_delete( self, bytes_limit, items_limit=None, age_limit=None ): """ Get items to delete to keep the store under size, file, & age limits. """ if isinstance(bytes_limit, str): bytes_limit = memstr_to_bytes(bytes_limit) items = self.get_items() if not items: return [] size = sum(item.size for item in items) if bytes_limit is not None: to_delete_size = size - bytes_limit else: to_delete_size = 0 if items_limit is not None: to_delete_items = len(items) - items_limit else: to_delete_items = 0 if age_limit is not None: older_item = min(item.last_access for item in items) deadline = datetime.datetime.now() - age_limit else: deadline = None if ( to_delete_size <= 0 and to_delete_items <= 0 and (deadline is None or older_item > deadline) ): return [] # We want to delete first the cache items that were accessed a # long time ago items.sort(key=operator.attrgetter('last_access')) items_to_delete = [] size_so_far = 0 items_so_far = 0 for item in items: if ( (size_so_far >= to_delete_size) and items_so_far >= to_delete_items and (deadline is None or deadline < item.last_access) ): break items_to_delete.append(item) size_so_far += item.size items_so_far += 1 return items_to_delete def _concurrency_safe_write(self, to_write, filename, write_func): """Writes an object into a file in a concurrency-safe way.""" temporary_filename = concurrency_safe_write(to_write, filename, write_func) self._move_item(temporary_filename, filename) def __repr__(self): """Printable representation of the store location.""" return '{class_name}(location="{location}")'.format( class_name=self.__class__.__name__, location=self.location) class FileSystemStoreBackend(StoreBackendBase, StoreBackendMixin): """A StoreBackend used with local or network file systems.""" _open_item = staticmethod(open) _item_exists = staticmethod(os.path.exists) _move_item = staticmethod(concurrency_safe_rename) def clear_location(self, location): """Delete location on store.""" if (location == self.location): rm_subdirs(location) else: shutil.rmtree(location, ignore_errors=True) def create_location(self, location): """Create object location on store""" mkdirp(location) def get_items(self): """Returns the whole list of items available in the store.""" items = [] for dirpath, _, filenames in os.walk(self.location): is_cache_hash_dir = re.match('[a-f0-9]{32}', os.path.basename(dirpath)) if is_cache_hash_dir: output_filename = os.path.join(dirpath, 'output.pkl') try: last_access = os.path.getatime(output_filename) except OSError: try: last_access = os.path.getatime(dirpath) except OSError: # The directory has already been deleted continue last_access = datetime.datetime.fromtimestamp(last_access) try: full_filenames = [os.path.join(dirpath, fn) for fn in filenames] dirsize = sum(os.path.getsize(fn) for fn in full_filenames) except OSError: # Either output_filename or one of the files in # dirpath does not exist any more. We assume this # directory is being cleaned by another process already continue items.append(CacheItemInfo(dirpath, dirsize, last_access)) return items def configure(self, location, verbose=1, backend_options=None): """Configure the store backend. For this backend, valid store options are 'compress' and 'mmap_mode' """ if backend_options is None: backend_options = {} # setup location directory self.location = location if not os.path.exists(self.location): mkdirp(self.location) # item can be stored compressed for faster I/O self.compress = backend_options.get('compress', False) # FileSystemStoreBackend can be used with mmap_mode options under # certain conditions. mmap_mode = backend_options.get('mmap_mode') if self.compress and mmap_mode is not None: warnings.warn('Compressed items cannot be memmapped in a ' 'filesystem store. Option will be ignored.', stacklevel=2) self.mmap_mode = mmap_mode self.verbose = verbose PKaZZZ��Q�joblib/_utils.py# Adapted from https://stackoverflow.com/a/9558001/2536294 import ast from dataclasses import dataclass import operator as op from ._multiprocessing_helpers import mp if mp is not None: from .externals.loky.process_executor import _ExceptionWithTraceback # supported operators operators = { ast.Add: op.add, ast.Sub: op.sub, ast.Mult: op.mul, ast.Div: op.truediv, ast.FloorDiv: op.floordiv, ast.Mod: op.mod, ast.Pow: op.pow, ast.USub: op.neg, } def eval_expr(expr): """ >>> eval_expr('2*6') 12 >>> eval_expr('2**6') 64 >>> eval_expr('1 + 2*3**(4) / (6 + -7)') -161.0 """ try: return eval_(ast.parse(expr, mode="eval").body) except (TypeError, SyntaxError, KeyError) as e: raise ValueError( f"{expr!r} is not a valid or supported arithmetic expression." ) from e def eval_(node): if isinstance(node, ast.Constant): # <constant> return node.value elif isinstance(node, ast.BinOp): # <left> <operator> <right> return operators[type(node.op)](eval_(node.left), eval_(node.right)) elif isinstance(node, ast.UnaryOp): # <operator> <operand> e.g., -1 return operators[type(node.op)](eval_(node.operand)) else: raise TypeError(node) @dataclass(frozen=True) class _Sentinel: """A sentinel to mark a parameter as not explicitly set""" default_value: object def __repr__(self): return f"default({self.default_value!r})" class _TracebackCapturingWrapper: """Protect function call and return error with traceback.""" def __init__(self, func): self.func = func def __call__(self, **kwargs): try: return self.func(**kwargs) except BaseException as e: return _ExceptionWithTraceback(e) def _retrieve_traceback_capturing_wrapped_call(out): if isinstance(out, _ExceptionWithTraceback): rebuild, args = out.__reduce__() out = rebuild(*args) if isinstance(out, BaseException): raise out return out PKaZZZ6&K\��joblib/backports.py""" Backports of fixes for joblib dependencies """ import os import re import time from os.path import basename from multiprocessing import util class Version: """Backport from deprecated distutils We maintain this backport to avoid introducing a new dependency on `packaging`. We might rexplore this choice in the future if all major Python projects introduce a dependency on packaging anyway. """ def __init__(self, vstring=None): if vstring: self.parse(vstring) def __repr__(self): return "%s ('%s')" % (self.__class__.__name__, str(self)) def __eq__(self, other): c = self._cmp(other) if c is NotImplemented: return c return c == 0 def __lt__(self, other): c = self._cmp(other) if c is NotImplemented: return c return c < 0 def __le__(self, other): c = self._cmp(other) if c is NotImplemented: return c return c <= 0 def __gt__(self, other): c = self._cmp(other) if c is NotImplemented: return c return c > 0 def __ge__(self, other): c = self._cmp(other) if c is NotImplemented: return c return c >= 0 class LooseVersion(Version): """Backport from deprecated distutils We maintain this backport to avoid introducing a new dependency on `packaging`. We might rexplore this choice in the future if all major Python projects introduce a dependency on packaging anyway. """ component_re = re.compile(r'(\d+ | [a-z]+ | \.)', re.VERBOSE) def __init__(self, vstring=None): if vstring: self.parse(vstring) def parse(self, vstring): # I've given up on thinking I can reconstruct the version string # from the parsed tuple -- so I just store the string here for # use by __str__ self.vstring = vstring components = [x for x in self.component_re.split(vstring) if x and x != '.'] for i, obj in enumerate(components): try: components[i] = int(obj) except ValueError: pass self.version = components def __str__(self): return self.vstring def __repr__(self): return "LooseVersion ('%s')" % str(self) def _cmp(self, other): if isinstance(other, str): other = LooseVersion(other) elif not isinstance(other, LooseVersion): return NotImplemented if self.version == other.version: return 0 if self.version < other.version: return -1 if self.version > other.version: return 1 try: import numpy as np def make_memmap(filename, dtype='uint8', mode='r+', offset=0, shape=None, order='C', unlink_on_gc_collect=False): """Custom memmap constructor compatible with numpy.memmap. This function: - is a backport the numpy memmap offset fix (See https://github.com/numpy/numpy/pull/8443 for more details. The numpy fix is available starting numpy 1.13) - adds ``unlink_on_gc_collect``, which specifies explicitly whether the process re-constructing the memmap owns a reference to the underlying file. If set to True, it adds a finalizer to the newly-created memmap that sends a maybe_unlink request for the memmaped file to resource_tracker. """ util.debug( "[MEMMAP READ] creating a memmap (shape {}, filename {}, " "pid {})".format(shape, basename(filename), os.getpid()) ) mm = np.memmap(filename, dtype=dtype, mode=mode, offset=offset, shape=shape, order=order) if LooseVersion(np.__version__) < '1.13': mm.offset = offset if unlink_on_gc_collect: from ._memmapping_reducer import add_maybe_unlink_finalizer add_maybe_unlink_finalizer(mm) return mm except ImportError: def make_memmap(filename, dtype='uint8', mode='r+', offset=0, shape=None, order='C', unlink_on_gc_collect=False): raise NotImplementedError( "'joblib.backports.make_memmap' should not be used " 'if numpy is not installed.') if os.name == 'nt': # https://github.com/joblib/joblib/issues/540 access_denied_errors = (5, 13) from os import replace def concurrency_safe_rename(src, dst): """Renames ``src`` into ``dst`` overwriting ``dst`` if it exists. On Windows os.replace can yield permission errors if executed by two different processes. """ max_sleep_time = 1 total_sleep_time = 0 sleep_time = 0.001 while total_sleep_time < max_sleep_time: try: replace(src, dst) break except Exception as exc: if getattr(exc, 'winerror', None) in access_denied_errors: time.sleep(sleep_time) total_sleep_time += sleep_time sleep_time *= 2 else: raise else: raise else: from os import replace as concurrency_safe_rename # noqa PKaZZZ�bxv8M8Mjoblib/compressor.py"""Classes and functions for managing compressors.""" import io import zlib from joblib.backports import LooseVersion try: from threading import RLock except ImportError: from dummy_threading import RLock try: import bz2 except ImportError: bz2 = None try: import lz4 from lz4.frame import LZ4FrameFile except ImportError: lz4 = None try: import lzma except ImportError: lzma = None LZ4_NOT_INSTALLED_ERROR = ('LZ4 is not installed. Install it with pip: ' 'https://python-lz4.readthedocs.io/') # Registered compressors _COMPRESSORS = {} # Magic numbers of supported compression file formats. _ZFILE_PREFIX = b'ZF' # used with pickle files created before 0.9.3. _ZLIB_PREFIX = b'\x78' _GZIP_PREFIX = b'\x1f\x8b' _BZ2_PREFIX = b'BZ' _XZ_PREFIX = b'\xfd\x37\x7a\x58\x5a' _LZMA_PREFIX = b'\x5d\x00' _LZ4_PREFIX = b'\x04\x22\x4D\x18' def register_compressor(compressor_name, compressor, force=False): """Register a new compressor. Parameters ---------- compressor_name: str. The name of the compressor. compressor: CompressorWrapper An instance of a 'CompressorWrapper'. """ global _COMPRESSORS if not isinstance(compressor_name, str): raise ValueError("Compressor name should be a string, " "'{}' given.".format(compressor_name)) if not isinstance(compressor, CompressorWrapper): raise ValueError("Compressor should implement the CompressorWrapper " "interface, '{}' given.".format(compressor)) if (compressor.fileobj_factory is not None and (not hasattr(compressor.fileobj_factory, 'read') or not hasattr(compressor.fileobj_factory, 'write') or not hasattr(compressor.fileobj_factory, 'seek') or not hasattr(compressor.fileobj_factory, 'tell'))): raise ValueError("Compressor 'fileobj_factory' attribute should " "implement the file object interface, '{}' given." .format(compressor.fileobj_factory)) if compressor_name in _COMPRESSORS and not force: raise ValueError("Compressor '{}' already registered." .format(compressor_name)) _COMPRESSORS[compressor_name] = compressor class CompressorWrapper(): """A wrapper around a compressor file object. Attributes ---------- obj: a file-like object The object must implement the buffer interface and will be used internally to compress/decompress the data. prefix: bytestring A bytestring corresponding to the magic number that identifies the file format associated to the compressor. extension: str The file extension used to automatically select this compressor during a dump to a file. """ def __init__(self, obj, prefix=b'', extension=''): self.fileobj_factory = obj self.prefix = prefix self.extension = extension def compressor_file(self, fileobj, compresslevel=None): """Returns an instance of a compressor file object.""" if compresslevel is None: return self.fileobj_factory(fileobj, 'wb') else: return self.fileobj_factory(fileobj, 'wb', compresslevel=compresslevel) def decompressor_file(self, fileobj): """Returns an instance of a decompressor file object.""" return self.fileobj_factory(fileobj, 'rb') class BZ2CompressorWrapper(CompressorWrapper): prefix = _BZ2_PREFIX extension = '.bz2' def __init__(self): if bz2 is not None: self.fileobj_factory = bz2.BZ2File else: self.fileobj_factory = None def _check_versions(self): if bz2 is None: raise ValueError('bz2 module is not compiled on your python ' 'standard library.') def compressor_file(self, fileobj, compresslevel=None): """Returns an instance of a compressor file object.""" self._check_versions() if compresslevel is None: return self.fileobj_factory(fileobj, 'wb') else: return self.fileobj_factory(fileobj, 'wb', compresslevel=compresslevel) def decompressor_file(self, fileobj): """Returns an instance of a decompressor file object.""" self._check_versions() fileobj = self.fileobj_factory(fileobj, 'rb') return fileobj class LZMACompressorWrapper(CompressorWrapper): prefix = _LZMA_PREFIX extension = '.lzma' _lzma_format_name = 'FORMAT_ALONE' def __init__(self): if lzma is not None: self.fileobj_factory = lzma.LZMAFile self._lzma_format = getattr(lzma, self._lzma_format_name) else: self.fileobj_factory = None def _check_versions(self): if lzma is None: raise ValueError('lzma module is not compiled on your python ' 'standard library.') def compressor_file(self, fileobj, compresslevel=None): """Returns an instance of a compressor file object.""" if compresslevel is None: return self.fileobj_factory(fileobj, 'wb', format=self._lzma_format) else: return self.fileobj_factory(fileobj, 'wb', format=self._lzma_format, preset=compresslevel) def decompressor_file(self, fileobj): """Returns an instance of a decompressor file object.""" return lzma.LZMAFile(fileobj, 'rb') class XZCompressorWrapper(LZMACompressorWrapper): prefix = _XZ_PREFIX extension = '.xz' _lzma_format_name = 'FORMAT_XZ' class LZ4CompressorWrapper(CompressorWrapper): prefix = _LZ4_PREFIX extension = '.lz4' def __init__(self): if lz4 is not None: self.fileobj_factory = LZ4FrameFile else: self.fileobj_factory = None def _check_versions(self): if lz4 is None: raise ValueError(LZ4_NOT_INSTALLED_ERROR) lz4_version = lz4.__version__ if lz4_version.startswith("v"): lz4_version = lz4_version[1:] if LooseVersion(lz4_version) < LooseVersion('0.19'): raise ValueError(LZ4_NOT_INSTALLED_ERROR) def compressor_file(self, fileobj, compresslevel=None): """Returns an instance of a compressor file object.""" self._check_versions() if compresslevel is None: return self.fileobj_factory(fileobj, 'wb') else: return self.fileobj_factory(fileobj, 'wb', compression_level=compresslevel) def decompressor_file(self, fileobj): """Returns an instance of a decompressor file object.""" self._check_versions() return self.fileobj_factory(fileobj, 'rb') ############################################################################### # base file compression/decompression object definition _MODE_CLOSED = 0 _MODE_READ = 1 _MODE_READ_EOF = 2 _MODE_WRITE = 3 _BUFFER_SIZE = 8192 class BinaryZlibFile(io.BufferedIOBase): """A file object providing transparent zlib (de)compression. TODO python2_drop: is it still needed since we dropped Python 2 support A BinaryZlibFile can act as a wrapper for an existing file object, or refer directly to a named file on disk. Note that BinaryZlibFile provides only a *binary* file interface: data read is returned as bytes, and data to be written should be given as bytes. This object is an adaptation of the BZ2File object and is compatible with versions of python >= 2.7. If filename is a str or bytes object, it gives the name of the file to be opened. Otherwise, it should be a file object, which will be used to read or write the compressed data. mode can be 'rb' for reading (default) or 'wb' for (over)writing If mode is 'wb', compresslevel can be a number between 1 and 9 specifying the level of compression: 1 produces the least compression, and 9 produces the most compression. 3 is the default. """ wbits = zlib.MAX_WBITS def __init__(self, filename, mode="rb", compresslevel=3): # This lock must be recursive, so that BufferedIOBase's # readline(), readlines() and writelines() don't deadlock. self._lock = RLock() self._fp = None self._closefp = False self._mode = _MODE_CLOSED self._pos = 0 self._size = -1 self.compresslevel = compresslevel if not isinstance(compresslevel, int) or not (1 <= compresslevel <= 9): raise ValueError("'compresslevel' must be an integer " "between 1 and 9. You provided 'compresslevel={}'" .format(compresslevel)) if mode == "rb": self._mode = _MODE_READ self._decompressor = zlib.decompressobj(self.wbits) self._buffer = b"" self._buffer_offset = 0 elif mode == "wb": self._mode = _MODE_WRITE self._compressor = zlib.compressobj(self.compresslevel, zlib.DEFLATED, self.wbits, zlib.DEF_MEM_LEVEL, 0) else: raise ValueError("Invalid mode: %r" % (mode,)) if isinstance(filename, str): self._fp = io.open(filename, mode) self._closefp = True elif hasattr(filename, "read") or hasattr(filename, "write"): self._fp = filename else: raise TypeError("filename must be a str or bytes object, " "or a file") def close(self): """Flush and close the file. May be called more than once without error. Once the file is closed, any other operation on it will raise a ValueError. """ with self._lock: if self._mode == _MODE_CLOSED: return try: if self._mode in (_MODE_READ, _MODE_READ_EOF): self._decompressor = None elif self._mode == _MODE_WRITE: self._fp.write(self._compressor.flush()) self._compressor = None finally: try: if self._closefp: self._fp.close() finally: self._fp = None self._closefp = False self._mode = _MODE_CLOSED self._buffer = b"" self._buffer_offset = 0 @property def closed(self): """True if this file is closed.""" return self._mode == _MODE_CLOSED def fileno(self): """Return the file descriptor for the underlying file.""" self._check_not_closed() return self._fp.fileno() def seekable(self): """Return whether the file supports seeking.""" return self.readable() and self._fp.seekable() def readable(self): """Return whether the file was opened for reading.""" self._check_not_closed() return self._mode in (_MODE_READ, _MODE_READ_EOF) def writable(self): """Return whether the file was opened for writing.""" self._check_not_closed() return self._mode == _MODE_WRITE # Mode-checking helper functions. def _check_not_closed(self): if self.closed: fname = getattr(self._fp, 'name', None) msg = "I/O operation on closed file" if fname is not None: msg += " {}".format(fname) msg += "." raise ValueError(msg) def _check_can_read(self): if self._mode not in (_MODE_READ, _MODE_READ_EOF): self._check_not_closed() raise io.UnsupportedOperation("File not open for reading") def _check_can_write(self): if self._mode != _MODE_WRITE: self._check_not_closed() raise io.UnsupportedOperation("File not open for writing") def _check_can_seek(self): if self._mode not in (_MODE_READ, _MODE_READ_EOF): self._check_not_closed() raise io.UnsupportedOperation("Seeking is only supported " "on files open for reading") if not self._fp.seekable(): raise io.UnsupportedOperation("The underlying file object " "does not support seeking") # Fill the readahead buffer if it is empty. Returns False on EOF. def _fill_buffer(self): if self._mode == _MODE_READ_EOF: return False # Depending on the input data, our call to the decompressor may not # return any data. In this case, try again after reading another block. while self._buffer_offset == len(self._buffer): try: rawblock = (self._decompressor.unused_data or self._fp.read(_BUFFER_SIZE)) if not rawblock: raise EOFError except EOFError: # End-of-stream marker and end of file. We're good. self._mode = _MODE_READ_EOF self._size = self._pos return False else: self._buffer = self._decompressor.decompress(rawblock) self._buffer_offset = 0 return True # Read data until EOF. # If return_data is false, consume the data without returning it. def _read_all(self, return_data=True): # The loop assumes that _buffer_offset is 0. Ensure that this is true. self._buffer = self._buffer[self._buffer_offset:] self._buffer_offset = 0 blocks = [] while self._fill_buffer(): if return_data: blocks.append(self._buffer) self._pos += len(self._buffer) self._buffer = b"" if return_data: return b"".join(blocks) # Read a block of up to n bytes. # If return_data is false, consume the data without returning it. def _read_block(self, n_bytes, return_data=True): # If we have enough data buffered, return immediately. end = self._buffer_offset + n_bytes if end <= len(self._buffer): data = self._buffer[self._buffer_offset: end] self._buffer_offset = end self._pos += len(data) return data if return_data else None # The loop assumes that _buffer_offset is 0. Ensure that this is true. self._buffer = self._buffer[self._buffer_offset:] self._buffer_offset = 0 blocks = [] while n_bytes > 0 and self._fill_buffer(): if n_bytes < len(self._buffer): data = self._buffer[:n_bytes] self._buffer_offset = n_bytes else: data = self._buffer self._buffer = b"" if return_data: blocks.append(data) self._pos += len(data) n_bytes -= len(data) if return_data: return b"".join(blocks) def read(self, size=-1): """Read up to size uncompressed bytes from the file. If size is negative or omitted, read until EOF is reached. Returns b'' if the file is already at EOF. """ with self._lock: self._check_can_read() if size == 0: return b"" elif size < 0: return self._read_all() else: return self._read_block(size) def readinto(self, b): """Read up to len(b) bytes into b. Returns the number of bytes read (0 for EOF). """ with self._lock: return io.BufferedIOBase.readinto(self, b) def write(self, data): """Write a byte string to the file. Returns the number of uncompressed bytes written, which is always len(data). Note that due to buffering, the file on disk may not reflect the data written until close() is called. """ with self._lock: self._check_can_write() # Convert data type if called by io.BufferedWriter. if isinstance(data, memoryview): data = data.tobytes() compressed = self._compressor.compress(data) self._fp.write(compressed) self._pos += len(data) return len(data) # Rewind the file to the beginning of the data stream. def _rewind(self): self._fp.seek(0, 0) self._mode = _MODE_READ self._pos = 0 self._decompressor = zlib.decompressobj(self.wbits) self._buffer = b"" self._buffer_offset = 0 def seek(self, offset, whence=0): """Change the file position. The new position is specified by offset, relative to the position indicated by whence. Values for whence are: 0: start of stream (default); offset must not be negative 1: current stream position 2: end of stream; offset must not be positive Returns the new file position. Note that seeking is emulated, so depending on the parameters, this operation may be extremely slow. """ with self._lock: self._check_can_seek() # Recalculate offset as an absolute file position. if whence == 0: pass elif whence == 1: offset = self._pos + offset elif whence == 2: # Seeking relative to EOF - we need to know the file's size. if self._size < 0: self._read_all(return_data=False) offset = self._size + offset else: raise ValueError("Invalid value for whence: %s" % (whence,)) # Make it so that offset is the number of bytes to skip forward. if offset < self._pos: self._rewind() else: offset -= self._pos # Read and discard data until we reach the desired position. self._read_block(offset, return_data=False) return self._pos def tell(self): """Return the current file position.""" with self._lock: self._check_not_closed() return self._pos class ZlibCompressorWrapper(CompressorWrapper): def __init__(self): CompressorWrapper.__init__(self, obj=BinaryZlibFile, prefix=_ZLIB_PREFIX, extension='.z') class BinaryGzipFile(BinaryZlibFile): """A file object providing transparent gzip (de)compression. If filename is a str or bytes object, it gives the name of the file to be opened. Otherwise, it should be a file object, which will be used to read or write the compressed data. mode can be 'rb' for reading (default) or 'wb' for (over)writing If mode is 'wb', compresslevel can be a number between 1 and 9 specifying the level of compression: 1 produces the least compression, and 9 produces the most compression. 3 is the default. """ wbits = 31 # zlib compressor/decompressor wbits value for gzip format. class GzipCompressorWrapper(CompressorWrapper): def __init__(self): CompressorWrapper.__init__(self, obj=BinaryGzipFile, prefix=_GZIP_PREFIX, extension='.gz') PKaZZZm� %%joblib/disk.py""" Disk management utilities. """ # Authors: Gael Varoquaux <gael dot varoquaux at normalesup dot org> # Lars Buitinck # Copyright (c) 2010 Gael Varoquaux # License: BSD Style, 3 clauses. import os import sys import time import errno import shutil from multiprocessing import util try: WindowsError except NameError: WindowsError = OSError def disk_used(path): """ Return the disk usage in a directory.""" size = 0 for file in os.listdir(path) + ['.']: stat = os.stat(os.path.join(path, file)) if hasattr(stat, 'st_blocks'): size += stat.st_blocks * 512 else: # on some platform st_blocks is not available (e.g., Windows) # approximate by rounding to next multiple of 512 size += (stat.st_size // 512 + 1) * 512 # We need to convert to int to avoid having longs on some systems (we # don't want longs to avoid problems we SQLite) return int(size / 1024.) def memstr_to_bytes(text): """ Convert a memory text to its value in bytes. """ kilo = 1024 units = dict(K=kilo, M=kilo ** 2, G=kilo ** 3) try: size = int(units[text[-1]] * float(text[:-1])) except (KeyError, ValueError) as e: raise ValueError( "Invalid literal for size give: %s (type %s) should be " "alike '10G', '500M', '50K'." % (text, type(text))) from e return size def mkdirp(d): """Ensure directory d exists (like mkdir -p on Unix) No guarantee that the directory is writable. """ try: os.makedirs(d) except OSError as e: if e.errno != errno.EEXIST: raise # if a rmtree operation fails in rm_subdirs, wait for this much time (in secs), # then retry up to RM_SUBDIRS_N_RETRY times. If it still fails, raise the # exception. this mechanism ensures that the sub-process gc have the time to # collect and close the memmaps before we fail. RM_SUBDIRS_RETRY_TIME = 0.1 RM_SUBDIRS_N_RETRY = 10 def rm_subdirs(path, onerror=None): """Remove all subdirectories in this path. The directory indicated by `path` is left in place, and its subdirectories are erased. If onerror is set, it is called to handle the error with arguments (func, path, exc_info) where func is os.listdir, os.remove, or os.rmdir; path is the argument to that function that caused it to fail; and exc_info is a tuple returned by sys.exc_info(). If onerror is None, an exception is raised. """ # NOTE this code is adapted from the one in shutil.rmtree, and is # just as fast names = [] try: names = os.listdir(path) except os.error: if onerror is not None: onerror(os.listdir, path, sys.exc_info()) else: raise for name in names: fullname = os.path.join(path, name) delete_folder(fullname, onerror=onerror) def delete_folder(folder_path, onerror=None, allow_non_empty=True): """Utility function to cleanup a temporary folder if it still exists.""" if os.path.isdir(folder_path): if onerror is not None: shutil.rmtree(folder_path, False, onerror) else: # allow the rmtree to fail once, wait and re-try. # if the error is raised again, fail err_count = 0 while True: files = os.listdir(folder_path) try: if len(files) == 0 or allow_non_empty: shutil.rmtree( folder_path, ignore_errors=False, onerror=None ) util.debug( "Successfully deleted {}".format(folder_path)) break else: raise OSError( "Expected empty folder {} but got {} " "files.".format(folder_path, len(files)) ) except (OSError, WindowsError): err_count += 1 if err_count > RM_SUBDIRS_N_RETRY: # the folder cannot be deleted right now. It maybe # because some temporary files have not been deleted # yet. raise time.sleep(RM_SUBDIRS_RETRY_TIME) PKaZZZ�/joblib/executor.py"""Utility function to construct a loky.ReusableExecutor with custom pickler. This module provides efficient ways of working with data stored in shared memory with numpy.memmap arrays without inducing any memory copy between the parent and child processes. """ # Author: Thomas Moreau <thomas.moreau.2010@gmail.com> # Copyright: 2017, Thomas Moreau # License: BSD 3 clause from ._memmapping_reducer import get_memmapping_reducers from ._memmapping_reducer import TemporaryResourcesManager from .externals.loky.reusable_executor import _ReusablePoolExecutor _executor_args = None def get_memmapping_executor(n_jobs, **kwargs): return MemmappingExecutor.get_memmapping_executor(n_jobs, **kwargs) class MemmappingExecutor(_ReusablePoolExecutor): @classmethod def get_memmapping_executor(cls, n_jobs, timeout=300, initializer=None, initargs=(), env=None, temp_folder=None, context_id=None, **backend_args): """Factory for ReusableExecutor with automatic memmapping for large numpy arrays. """ global _executor_args # Check if we can reuse the executor here instead of deferring the test # to loky as the reducers are objects that changes at each call. executor_args = backend_args.copy() executor_args.update(env if env else {}) executor_args.update(dict( timeout=timeout, initializer=initializer, initargs=initargs)) reuse = _executor_args is None or _executor_args == executor_args _executor_args = executor_args manager = TemporaryResourcesManager(temp_folder) # reducers access the temporary folder in which to store temporary # pickles through a call to manager.resolve_temp_folder_name. resolving # the folder name dynamically is useful to use different folders across # calls of a same reusable executor job_reducers, result_reducers = get_memmapping_reducers( unlink_on_gc_collect=True, temp_folder_resolver=manager.resolve_temp_folder_name, **backend_args) _executor, executor_is_reused = super().get_reusable_executor( n_jobs, job_reducers=job_reducers, result_reducers=result_reducers, reuse=reuse, timeout=timeout, initializer=initializer, initargs=initargs, env=env ) if not executor_is_reused: # Only set a _temp_folder_manager for new executors. Reused # executors already have a _temporary_folder_manager that must not # be re-assigned like that because it is referenced in various # places in the reducing machinery of the executor. _executor._temp_folder_manager = manager if context_id is not None: # Only register the specified context once we know which manager # the current executor is using, in order to not register an atexit # finalizer twice for the same folder. _executor._temp_folder_manager.register_new_context(context_id) return _executor def terminate(self, kill_workers=False): self.shutdown(kill_workers=kill_workers) # When workers are killed in a brutal manner, they cannot execute the # finalizer of their shared memmaps. The refcount of those memmaps may # be off by an unknown number, so instead of decref'ing them, we force # delete the whole temporary folder, and unregister them. There is no # risk of PermissionError at folder deletion because at this # point, all child processes are dead, so all references to temporary # memmaps are closed. Otherwise, just try to delete as much as possible # with allow_non_empty=True but if we can't, it will be clean up later # on by the resource_tracker. with self._submit_resize_lock: self._temp_folder_manager._clean_temporary_resources( force=kill_workers, allow_non_empty=True ) @property def _temp_folder(self): # Legacy property in tests. could be removed if we refactored the # memmapping tests. SHOULD ONLY BE USED IN TESTS! # We cache this property because it is called late in the tests - at # this point, all context have been unregistered, and # resolve_temp_folder_name raises an error. if getattr(self, '_cached_temp_folder', None) is not None: return self._cached_temp_folder else: self._cached_temp_folder = self._temp_folder_manager.resolve_temp_folder_name() # noqa return self._cached_temp_folder class _TestingMemmappingExecutor(MemmappingExecutor): """Wrapper around ReusableExecutor to ease memmapping testing with Pool and Executor. This is only for testing purposes. """ def apply_async(self, func, args): """Schedule a func to be run""" future = self.submit(func, *args) future.get = future.result return future def map(self, f, *args): return list(super().map(f, *args)) PKaZZZd}�|7|7joblib/func_inspect.py""" My own variation on function-specific inspect-like features. """ # Author: Gael Varoquaux <gael dot varoquaux at normalesup dot org> # Copyright (c) 2009 Gael Varoquaux # License: BSD Style, 3 clauses. import inspect import warnings import re import os import collections from itertools import islice from tokenize import open as open_py_source from .logger import pformat full_argspec_fields = ('args varargs varkw defaults kwonlyargs ' 'kwonlydefaults annotations') full_argspec_type = collections.namedtuple('FullArgSpec', full_argspec_fields) def get_func_code(func): """ Attempts to retrieve a reliable function code hash. The reason we don't use inspect.getsource is that it caches the source, whereas we want this to be modified on the fly when the function is modified. Returns ------- func_code: string The function code source_file: string The path to the file in which the function is defined. first_line: int The first line of the code in the source file. Notes ------ This function does a bit more magic than inspect, and is thus more robust. """ source_file = None try: code = func.__code__ source_file = code.co_filename if not os.path.exists(source_file): # Use inspect for lambda functions and functions defined in an # interactive shell, or in doctests source_code = ''.join(inspect.getsourcelines(func)[0]) line_no = 1 if source_file.startswith('<doctest '): source_file, line_no = re.match( r'\<doctest (.*\.rst)\[(.*)\]\>', source_file).groups() line_no = int(line_no) source_file = '<doctest %s>' % source_file return source_code, source_file, line_no # Try to retrieve the source code. with open_py_source(source_file) as source_file_obj: first_line = code.co_firstlineno # All the lines after the function definition: source_lines = list(islice(source_file_obj, first_line - 1, None)) return ''.join(inspect.getblock(source_lines)), source_file, first_line except: # noqa: E722 # If the source code fails, we use the hash. This is fragile and # might change from one session to another. if hasattr(func, '__code__'): # Python 3.X return str(func.__code__.__hash__()), source_file, -1 else: # Weird objects like numpy ufunc don't have __code__ # This is fragile, as quite often the id of the object is # in the repr, so it might not persist across sessions, # however it will work for ufuncs. return repr(func), source_file, -1 def _clean_win_chars(string): """Windows cannot encode some characters in filename.""" import urllib if hasattr(urllib, 'quote'): quote = urllib.quote else: # In Python 3, quote is elsewhere import urllib.parse quote = urllib.parse.quote for char in ('<', '>', '!', ':', '\\'): string = string.replace(char, quote(char)) return string def get_func_name(func, resolv_alias=True, win_characters=True): """ Return the function import path (as a list of module names), and a name for the function. Parameters ---------- func: callable The func to inspect resolv_alias: boolean, optional If true, possible local aliases are indicated. win_characters: boolean, optional If true, substitute special characters using urllib.quote This is useful in Windows, as it cannot encode some filenames """ if hasattr(func, '__module__'): module = func.__module__ else: try: module = inspect.getmodule(func) except TypeError: if hasattr(func, '__class__'): module = func.__class__.__module__ else: module = 'unknown' if module is None: # Happens in doctests, eg module = '' if module == '__main__': try: filename = os.path.abspath(inspect.getsourcefile(func)) except: # noqa: E722 filename = None if filename is not None: # mangling of full path to filename parts = filename.split(os.sep) if parts[-1].startswith('<ipython-input'): # We're in a IPython (or notebook) session. parts[-1] comes # from func.__code__.co_filename and is of the form # <ipython-input-N-XYZ>, where: # - N is the cell number where the function was defined # - XYZ is a hash representing the function's code (and name). # It will be consistent across sessions and kernel restarts, # and will change if the function's code/name changes # We remove N so that cache is properly hit if the cell where # the func is defined is re-exectuted. # The XYZ hash should avoid collisions between functions with # the same name, both within the same notebook but also across # notebooks splitted = parts[-1].split('-') parts[-1] = '-'.join(splitted[:2] + splitted[3:]) elif len(parts) > 2 and parts[-2].startswith('ipykernel_'): # In a notebook session (ipykernel). Filename seems to be 'xyz' # of above. parts[-2] has the structure ipykernel_XXXXXX where # XXXXXX is a six-digit number identifying the current run (?). # If we split it off, the function again has the same # identifier across runs. parts[-2] = 'ipykernel' filename = '-'.join(parts) if filename.endswith('.py'): filename = filename[:-3] module = module + '-' + filename module = module.split('.') if hasattr(func, 'func_name'): name = func.func_name elif hasattr(func, '__name__'): name = func.__name__ else: name = 'unknown' # Hack to detect functions not defined at the module-level if resolv_alias: # TODO: Maybe add a warning here? if hasattr(func, 'func_globals') and name in func.func_globals: if not func.func_globals[name] is func: name = '%s-alias' % name if hasattr(func, '__qualname__') and func.__qualname__ != name: # Extend the module name in case of nested functions to avoid # (module, name) collisions module.extend(func.__qualname__.split(".")[:-1]) if inspect.ismethod(func): # We need to add the name of the class if hasattr(func, 'im_class'): klass = func.im_class module.append(klass.__name__) if os.name == 'nt' and win_characters: # Windows can't encode certain characters in filenames name = _clean_win_chars(name) module = [_clean_win_chars(s) for s in module] return module, name def _signature_str(function_name, arg_sig): """Helper function to output a function signature""" return '{}{}'.format(function_name, arg_sig) def _function_called_str(function_name, args, kwargs): """Helper function to output a function call""" template_str = '{0}({1}, {2})' args_str = repr(args)[1:-1] kwargs_str = ', '.join('%s=%s' % (k, v) for k, v in kwargs.items()) return template_str.format(function_name, args_str, kwargs_str) def filter_args(func, ignore_lst, args=(), kwargs=dict()): """ Filters the given args and kwargs using a list of arguments to ignore, and a function specification. Parameters ---------- func: callable Function giving the argument specification ignore_lst: list of strings List of arguments to ignore (either a name of an argument in the function spec, or '*', or '**') *args: list Positional arguments passed to the function. **kwargs: dict Keyword arguments passed to the function Returns ------- filtered_args: list List of filtered positional and keyword arguments. """ args = list(args) if isinstance(ignore_lst, str): # Catch a common mistake raise ValueError( 'ignore_lst must be a list of parameters to ignore ' '%s (type %s) was given' % (ignore_lst, type(ignore_lst))) # Special case for functools.partial objects if (not inspect.ismethod(func) and not inspect.isfunction(func)): if ignore_lst: warnings.warn('Cannot inspect object %s, ignore list will ' 'not work.' % func, stacklevel=2) return {'*': args, '**': kwargs} arg_sig = inspect.signature(func) arg_names = [] arg_defaults = [] arg_kwonlyargs = [] arg_varargs = None arg_varkw = None for param in arg_sig.parameters.values(): if param.kind is param.POSITIONAL_OR_KEYWORD: arg_names.append(param.name) elif param.kind is param.KEYWORD_ONLY: arg_names.append(param.name) arg_kwonlyargs.append(param.name) elif param.kind is param.VAR_POSITIONAL: arg_varargs = param.name elif param.kind is param.VAR_KEYWORD: arg_varkw = param.name if param.default is not param.empty: arg_defaults.append(param.default) if inspect.ismethod(func): # First argument is 'self', it has been removed by Python # we need to add it back: args = [func.__self__, ] + args # func is an instance method, inspect.signature(func) does not # include self, we need to fetch it from the class method, i.e # func.__func__ class_method_sig = inspect.signature(func.__func__) self_name = next(iter(class_method_sig.parameters)) arg_names = [self_name] + arg_names # XXX: Maybe I need an inspect.isbuiltin to detect C-level methods, such # as on ndarrays. _, name = get_func_name(func, resolv_alias=False) arg_dict = dict() arg_position = -1 for arg_position, arg_name in enumerate(arg_names): if arg_position < len(args): # Positional argument or keyword argument given as positional if arg_name not in arg_kwonlyargs: arg_dict[arg_name] = args[arg_position] else: raise ValueError( "Keyword-only parameter '%s' was passed as " 'positional parameter for %s:\n' ' %s was called.' % (arg_name, _signature_str(name, arg_sig), _function_called_str(name, args, kwargs)) ) else: position = arg_position - len(arg_names) if arg_name in kwargs: arg_dict[arg_name] = kwargs[arg_name] else: try: arg_dict[arg_name] = arg_defaults[position] except (IndexError, KeyError) as e: # Missing argument raise ValueError( 'Wrong number of arguments for %s:\n' ' %s was called.' % (_signature_str(name, arg_sig), _function_called_str(name, args, kwargs)) ) from e varkwargs = dict() for arg_name, arg_value in sorted(kwargs.items()): if arg_name in arg_dict: arg_dict[arg_name] = arg_value elif arg_varkw is not None: varkwargs[arg_name] = arg_value else: raise TypeError("Ignore list for %s() contains an unexpected " "keyword argument '%s'" % (name, arg_name)) if arg_varkw is not None: arg_dict['**'] = varkwargs if arg_varargs is not None: varargs = args[arg_position + 1:] arg_dict['*'] = varargs # Now remove the arguments to be ignored for item in ignore_lst: if item in arg_dict: arg_dict.pop(item) else: raise ValueError("Ignore list: argument '%s' is not defined for " "function %s" % (item, _signature_str(name, arg_sig)) ) # XXX: Return a sorted list of pairs? return arg_dict def _format_arg(arg): formatted_arg = pformat(arg, indent=2) if len(formatted_arg) > 1500: formatted_arg = '%s...' % formatted_arg[:700] return formatted_arg def format_signature(func, *args, **kwargs): # XXX: Should this use inspect.formatargvalues/formatargspec? module, name = get_func_name(func) module = [m for m in module if m] if module: module.append(name) module_path = '.'.join(module) else: module_path = name arg_str = list() previous_length = 0 for arg in args: formatted_arg = _format_arg(arg) if previous_length > 80: formatted_arg = '\n%s' % formatted_arg previous_length = len(formatted_arg) arg_str.append(formatted_arg) arg_str.extend(['%s=%s' % (v, _format_arg(i)) for v, i in kwargs.items()]) arg_str = ', '.join(arg_str) signature = '%s(%s)' % (name, arg_str) return module_path, signature def format_call(func, args, kwargs, object_name="Memory"): """ Returns a nicely formatted statement displaying the function call with the given arguments. """ path, signature = format_signature(func, *args, **kwargs) msg = '%s\n[%s] Calling %s...\n%s' % (80 * '_', object_name, path, signature) return msg # XXX: Not using logging framework # self.debug(msg) PKaZZZ���&')')joblib/hashing.py""" Fast cryptographic hash of Python objects, with a special case for fast hashing of numpy arrays. """ # Author: Gael Varoquaux <gael dot varoquaux at normalesup dot org> # Copyright (c) 2009 Gael Varoquaux # License: BSD Style, 3 clauses. import pickle import hashlib import sys import types import struct import io import decimal Pickler = pickle._Pickler class _ConsistentSet(object): """ Class used to ensure the hash of Sets is preserved whatever the order of its items. """ def __init__(self, set_sequence): # Forces order of elements in set to ensure consistent hash. try: # Trying first to order the set assuming the type of elements is # consistent and orderable. # This fails on python 3 when elements are unorderable # but we keep it in a try as it's faster. self._sequence = sorted(set_sequence) except (TypeError, decimal.InvalidOperation): # If elements are unorderable, sorting them using their hash. # This is slower but works in any case. self._sequence = sorted((hash(e) for e in set_sequence)) class _MyHash(object): """ Class used to hash objects that won't normally pickle """ def __init__(self, *args): self.args = args class Hasher(Pickler): """ A subclass of pickler, to do cryptographic hashing, rather than pickling. """ def __init__(self, hash_name='md5'): self.stream = io.BytesIO() # By default we want a pickle protocol that only changes with # the major python version and not the minor one protocol = 3 Pickler.__init__(self, self.stream, protocol=protocol) # Initialise the hash obj self._hash = hashlib.new(hash_name) def hash(self, obj, return_digest=True): try: self.dump(obj) except pickle.PicklingError as e: e.args += ('PicklingError while hashing %r: %r' % (obj, e),) raise dumps = self.stream.getvalue() self._hash.update(dumps) if return_digest: return self._hash.hexdigest() def save(self, obj): if isinstance(obj, (types.MethodType, type({}.pop))): # the Pickler cannot pickle instance methods; here we decompose # them into components that make them uniquely identifiable if hasattr(obj, '__func__'): func_name = obj.__func__.__name__ else: func_name = obj.__name__ inst = obj.__self__ if type(inst) is type(pickle): obj = _MyHash(func_name, inst.__name__) elif inst is None: # type(None) or type(module) do not pickle obj = _MyHash(func_name, inst) else: cls = obj.__self__.__class__ obj = _MyHash(func_name, inst, cls) Pickler.save(self, obj) def memoize(self, obj): # We want hashing to be sensitive to value instead of reference. # For example we want ['aa', 'aa'] and ['aa', 'aaZ'[:2]] # to hash to the same value and that's why we disable memoization # for strings if isinstance(obj, (bytes, str)): return Pickler.memoize(self, obj) # The dispatch table of the pickler is not accessible in Python # 3, as these lines are only bugware for IPython, we skip them. def save_global(self, obj, name=None, pack=struct.pack): # We have to override this method in order to deal with objects # defined interactively in IPython that are not injected in # __main__ kwargs = dict(name=name, pack=pack) del kwargs['pack'] try: Pickler.save_global(self, obj, **kwargs) except pickle.PicklingError: Pickler.save_global(self, obj, **kwargs) module = getattr(obj, "__module__", None) if module == '__main__': my_name = name if my_name is None: my_name = obj.__name__ mod = sys.modules[module] if not hasattr(mod, my_name): # IPython doesn't inject the variables define # interactively in __main__ setattr(mod, my_name, obj) dispatch = Pickler.dispatch.copy() # builtin dispatch[type(len)] = save_global # type dispatch[type(object)] = save_global # classobj dispatch[type(Pickler)] = save_global # function dispatch[type(pickle.dump)] = save_global def _batch_setitems(self, items): # forces order of keys in dict to ensure consistent hash. try: # Trying first to compare dict assuming the type of keys is # consistent and orderable. # This fails on python 3 when keys are unorderable # but we keep it in a try as it's faster. Pickler._batch_setitems(self, iter(sorted(items))) except TypeError: # If keys are unorderable, sorting them using their hash. This is # slower but works in any case. Pickler._batch_setitems(self, iter(sorted((hash(k), v) for k, v in items))) def save_set(self, set_items): # forces order of items in Set to ensure consistent hash Pickler.save(self, _ConsistentSet(set_items)) dispatch[type(set())] = save_set class NumpyHasher(Hasher): """ Special case the hasher for when numpy is loaded. """ def __init__(self, hash_name='md5', coerce_mmap=False): """ Parameters ---------- hash_name: string The hash algorithm to be used coerce_mmap: boolean Make no difference between np.memmap and np.ndarray objects. """ self.coerce_mmap = coerce_mmap Hasher.__init__(self, hash_name=hash_name) # delayed import of numpy, to avoid tight coupling import numpy as np self.np = np if hasattr(np, 'getbuffer'): self._getbuffer = np.getbuffer else: self._getbuffer = memoryview def save(self, obj): """ Subclass the save method, to hash ndarray subclass, rather than pickling them. Off course, this is a total abuse of the Pickler class. """ if isinstance(obj, self.np.ndarray) and not obj.dtype.hasobject: # Compute a hash of the object # The update function of the hash requires a c_contiguous buffer. if obj.shape == (): # 0d arrays need to be flattened because viewing them as bytes # raises a ValueError exception. obj_c_contiguous = obj.flatten() elif obj.flags.c_contiguous: obj_c_contiguous = obj elif obj.flags.f_contiguous: obj_c_contiguous = obj.T else: # Cater for non-single-segment arrays: this creates a # copy, and thus alleviates this issue. # XXX: There might be a more efficient way of doing this obj_c_contiguous = obj.flatten() # memoryview is not supported for some dtypes, e.g. datetime64, see # https://github.com/numpy/numpy/issues/4983. The # workaround is to view the array as bytes before # taking the memoryview. self._hash.update( self._getbuffer(obj_c_contiguous.view(self.np.uint8))) # We store the class, to be able to distinguish between # Objects with the same binary content, but different # classes. if self.coerce_mmap and isinstance(obj, self.np.memmap): # We don't make the difference between memmap and # normal ndarrays, to be able to reload previously # computed results with memmap. klass = self.np.ndarray else: klass = obj.__class__ # We also return the dtype and the shape, to distinguish # different views on the same data with different dtypes. # The object will be pickled by the pickler hashed at the end. obj = (klass, ('HASHED', obj.dtype, obj.shape, obj.strides)) elif isinstance(obj, self.np.dtype): # numpy.dtype consistent hashing is tricky to get right. This comes # from the fact that atomic np.dtype objects are interned: # ``np.dtype('f4') is np.dtype('f4')``. The situation is # complicated by the fact that this interning does not resist a # simple pickle.load/dump roundtrip: # ``pickle.loads(pickle.dumps(np.dtype('f4'))) is not # np.dtype('f4') Because pickle relies on memoization during # pickling, it is easy to # produce different hashes for seemingly identical objects, such as # ``[np.dtype('f4'), np.dtype('f4')]`` # and ``[np.dtype('f4'), pickle.loads(pickle.dumps('f4'))]``. # To prevent memoization from interfering with hashing, we isolate # the serialization (and thus the pickle memoization) of each dtype # using each time a different ``pickle.dumps`` call unrelated to # the current Hasher instance. self._hash.update("_HASHED_DTYPE".encode('utf-8')) self._hash.update(pickle.dumps(obj)) return Hasher.save(self, obj) def hash(obj, hash_name='md5', coerce_mmap=False): """ Quick calculation of a hash to identify uniquely Python objects containing numpy arrays. Parameters ---------- hash_name: 'md5' or 'sha1' Hashing algorithm used. sha1 is supposedly safer, but md5 is faster. coerce_mmap: boolean Make no difference between np.memmap and np.ndarray """ valid_hash_names = ('md5', 'sha1') if hash_name not in valid_hash_names: raise ValueError("Valid options for 'hash_name' are {}. " "Got hash_name={!r} instead." .format(valid_hash_names, hash_name)) if 'numpy' in sys.modules: hasher = NumpyHasher(hash_name=hash_name, coerce_mmap=coerce_mmap) else: hasher = Hasher(hash_name=hash_name) return hasher.hash(obj) PKaZZZ��b WWjoblib/logger.py""" Helpers for logging. This module needs much love to become useful. """ # Author: Gael Varoquaux <gael dot varoquaux at normalesup dot org> # Copyright (c) 2008 Gael Varoquaux # License: BSD Style, 3 clauses. from __future__ import print_function import time import sys import os import shutil import logging import pprint from .disk import mkdirp def _squeeze_time(t): """Remove .1s to the time under Windows: this is the time it take to stat files. This is needed to make results similar to timings under Unix, for tests """ if sys.platform.startswith('win'): return max(0, t - .1) else: return t def format_time(t): t = _squeeze_time(t) return "%.1fs, %.1fmin" % (t, t / 60.) def short_format_time(t): t = _squeeze_time(t) if t > 60: return "%4.1fmin" % (t / 60.) else: return " %5.1fs" % (t) def pformat(obj, indent=0, depth=3): if 'numpy' in sys.modules: import numpy as np print_options = np.get_printoptions() np.set_printoptions(precision=6, threshold=64, edgeitems=1) else: print_options = None out = pprint.pformat(obj, depth=depth, indent=indent) if print_options: np.set_printoptions(**print_options) return out ############################################################################### # class `Logger` ############################################################################### class Logger(object): """ Base class for logging messages. """ def __init__(self, depth=3, name=None): """ Parameters ---------- depth: int, optional The depth of objects printed. name: str, optional The namespace to log to. If None, defaults to joblib. """ self.depth = depth self._name = name if name else 'joblib' def warn(self, msg): logging.getLogger(self._name).warning("[%s]: %s" % (self, msg)) def info(self, msg): logging.info("[%s]: %s" % (self, msg)) def debug(self, msg): # XXX: This conflicts with the debug flag used in children class logging.getLogger(self._name).debug("[%s]: %s" % (self, msg)) def format(self, obj, indent=0): """Return the formatted representation of the object.""" return pformat(obj, indent=indent, depth=self.depth) ############################################################################### # class `PrintTime` ############################################################################### class PrintTime(object): """ Print and log messages while keeping track of time. """ def __init__(self, logfile=None, logdir=None): if logfile is not None and logdir is not None: raise ValueError('Cannot specify both logfile and logdir') # XXX: Need argument docstring self.last_time = time.time() self.start_time = self.last_time if logdir is not None: logfile = os.path.join(logdir, 'joblib.log') self.logfile = logfile if logfile is not None: mkdirp(os.path.dirname(logfile)) if os.path.exists(logfile): # Rotate the logs for i in range(1, 9): try: shutil.move(logfile + '.%i' % i, logfile + '.%i' % (i + 1)) except: # noqa: E722 "No reason failing here" # Use a copy rather than a move, so that a process # monitoring this file does not get lost. try: shutil.copy(logfile, logfile + '.1') except: # noqa: E722 "No reason failing here" try: with open(logfile, 'w') as logfile: logfile.write('\nLogging joblib python script\n') logfile.write('\n---%s---\n' % time.ctime(self.last_time)) except: # noqa: E722 """ Multiprocessing writing to files can create race conditions. Rather fail silently than crash the computation. """ # XXX: We actually need a debug flag to disable this # silent failure. def __call__(self, msg='', total=False): """ Print the time elapsed between the last call and the current call, with an optional message. """ if not total: time_lapse = time.time() - self.last_time full_msg = "%s: %s" % (msg, format_time(time_lapse)) else: # FIXME: Too much logic duplicated time_lapse = time.time() - self.start_time full_msg = "%s: %.2fs, %.1f min" % (msg, time_lapse, time_lapse / 60) print(full_msg, file=sys.stderr) if self.logfile is not None: try: with open(self.logfile, 'a') as f: print(full_msg, file=f) except: # noqa: E722 """ Multiprocessing writing to files can create race conditions. Rather fail silently than crash the calculation. """ # XXX: We actually need a debug flag to disable this # silent failure. self.last_time = time.time() PKaZZZ�Jb�����joblib/memory.py""" A context object for caching a function's return value each time it is called with the same input arguments. """ # Author: Gael Varoquaux <gael dot varoquaux at normalesup dot org> # Copyright (c) 2009 Gael Varoquaux # License: BSD Style, 3 clauses. import asyncio import datetime import functools import inspect import logging import os import pathlib import pydoc import re import textwrap import time import tokenize import traceback import warnings import weakref from . import hashing from ._store_backends import CacheWarning # noqa from ._store_backends import FileSystemStoreBackend, StoreBackendBase from .func_inspect import (filter_args, format_call, format_signature, get_func_code, get_func_name) from .logger import Logger, format_time, pformat FIRST_LINE_TEXT = "# first line:" # TODO: The following object should have a data store object as a sub # object, and the interface to persist and query should be separated in # the data store. # # This would enable creating 'Memory' objects with a different logic for # pickling that would simply span a MemorizedFunc with the same # store (or do we want to copy it to avoid cross-talks?), for instance to # implement HDF5 pickling. # TODO: Same remark for the logger, and probably use the Python logging # mechanism. def extract_first_line(func_code): """ Extract the first line information from the function code text if available. """ if func_code.startswith(FIRST_LINE_TEXT): func_code = func_code.split('\n') first_line = int(func_code[0][len(FIRST_LINE_TEXT):]) func_code = '\n'.join(func_code[1:]) else: first_line = -1 return func_code, first_line class JobLibCollisionWarning(UserWarning): """ Warn that there might be a collision between names of functions. """ _STORE_BACKENDS = {'local': FileSystemStoreBackend} def register_store_backend(backend_name, backend): """Extend available store backends. The Memory, MemorizeResult and MemorizeFunc objects are designed to be agnostic to the type of store used behind. By default, the local file system is used but this function gives the possibility to extend joblib's memory pattern with other types of storage such as cloud storage (S3, GCS, OpenStack, HadoopFS, etc) or blob DBs. Parameters ---------- backend_name: str The name identifying the store backend being registered. For example, 'local' is used with FileSystemStoreBackend. backend: StoreBackendBase subclass The name of a class that implements the StoreBackendBase interface. """ if not isinstance(backend_name, str): raise ValueError("Store backend name should be a string, " "'{0}' given.".format(backend_name)) if backend is None or not issubclass(backend, StoreBackendBase): raise ValueError("Store backend should inherit " "StoreBackendBase, " "'{0}' given.".format(backend)) _STORE_BACKENDS[backend_name] = backend def _store_backend_factory(backend, location, verbose=0, backend_options=None): """Return the correct store object for the given location.""" if backend_options is None: backend_options = {} if isinstance(location, pathlib.Path): location = str(location) if isinstance(location, StoreBackendBase): return location elif isinstance(location, str): obj = None location = os.path.expanduser(location) # The location is not a local file system, we look in the # registered backends if there's one matching the given backend # name. for backend_key, backend_obj in _STORE_BACKENDS.items(): if backend == backend_key: obj = backend_obj() # By default, we assume the FileSystemStoreBackend can be used if no # matching backend could be found. if obj is None: raise TypeError('Unknown location {0} or backend {1}'.format( location, backend)) # The store backend is configured with the extra named parameters, # some of them are specific to the underlying store backend. obj.configure(location, verbose=verbose, backend_options=backend_options) return obj elif location is not None: warnings.warn( "Instantiating a backend using a {} as a location is not " "supported by joblib. Returning None instead.".format( location.__class__.__name__), UserWarning) return None def _build_func_identifier(func): """Build a roughly unique identifier for the cached function.""" modules, funcname = get_func_name(func) # We reuse historical fs-like way of building a function identifier return os.path.join(*modules, funcname) # An in-memory store to avoid looking at the disk-based function # source code to check if a function definition has changed _FUNCTION_HASHES = weakref.WeakKeyDictionary() ############################################################################### # class `MemorizedResult` ############################################################################### class MemorizedResult(Logger): """Object representing a cached value. Attributes ---------- location: str The location of joblib cache. Depends on the store backend used. func: function or str function whose output is cached. The string case is intended only for instantiation based on the output of repr() on another instance. (namely eval(repr(memorized_instance)) works). argument_hash: str hash of the function arguments. backend: str Type of store backend for reading/writing cache files. Default is 'local'. mmap_mode: {None, 'r+', 'r', 'w+', 'c'} The memmapping mode used when loading from cache numpy arrays. See numpy.load for the meaning of the different values. verbose: int verbosity level (0 means no message). timestamp, metadata: string for internal use only. """ def __init__(self, location, call_id, backend='local', mmap_mode=None, verbose=0, timestamp=None, metadata=None): Logger.__init__(self) self._call_id = call_id self.store_backend = _store_backend_factory(backend, location, verbose=verbose) self.mmap_mode = mmap_mode if metadata is not None: self.metadata = metadata else: self.metadata = self.store_backend.get_metadata(self._call_id) self.duration = self.metadata.get('duration', None) self.verbose = verbose self.timestamp = timestamp @property def func(self): return self.func_id @property def func_id(self): return self._call_id[0] @property def args_id(self): return self._call_id[1] @property def argument_hash(self): warnings.warn( "The 'argument_hash' attribute has been deprecated in version " "0.12 and will be removed in version 0.14.\n" "Use `args_id` attribute instead.", DeprecationWarning, stacklevel=2) return self.args_id def get(self): """Read value from cache and return it.""" try: return self.store_backend.load_item( self._call_id, timestamp=self.timestamp, metadata=self.metadata, verbose=self.verbose ) except ValueError as exc: new_exc = KeyError( "Error while trying to load a MemorizedResult's value. " "It seems that this folder is corrupted : {}".format( os.path.join(self.store_backend.location, *self._call_id))) raise new_exc from exc def clear(self): """Clear value from cache""" self.store_backend.clear_item(self._call_id) def __repr__(self): return '{}(location="{}", func="{}", args_id="{}")'.format( self.__class__.__name__, self.store_backend.location, *self._call_id ) def __getstate__(self): state = self.__dict__.copy() state['timestamp'] = None return state class NotMemorizedResult(object): """Class representing an arbitrary value. This class is a replacement for MemorizedResult when there is no cache. """ __slots__ = ('value', 'valid') def __init__(self, value): self.value = value self.valid = True def get(self): if self.valid: return self.value else: raise KeyError("No value stored.") def clear(self): self.valid = False self.value = None def __repr__(self): if self.valid: return ('{class_name}({value})' .format(class_name=self.__class__.__name__, value=pformat(self.value))) else: return self.__class__.__name__ + ' with no value' # __getstate__ and __setstate__ are required because of __slots__ def __getstate__(self): return {"valid": self.valid, "value": self.value} def __setstate__(self, state): self.valid = state["valid"] self.value = state["value"] ############################################################################### # class `NotMemorizedFunc` ############################################################################### class NotMemorizedFunc(object): """No-op object decorating a function. This class replaces MemorizedFunc when there is no cache. It provides an identical API but does not write anything on disk. Attributes ---------- func: callable Original undecorated function. """ # Should be a light as possible (for speed) def __init__(self, func): self.func = func def __call__(self, *args, **kwargs): return self.func(*args, **kwargs) def call_and_shelve(self, *args, **kwargs): return NotMemorizedResult(self.func(*args, **kwargs)) def __repr__(self): return '{0}(func={1})'.format(self.__class__.__name__, self.func) def clear(self, warn=True): # Argument "warn" is for compatibility with MemorizedFunc.clear pass def call(self, *args, **kwargs): return self.func(*args, **kwargs) def check_call_in_cache(self, *args, **kwargs): return False ############################################################################### # class `AsyncNotMemorizedFunc` ############################################################################### class AsyncNotMemorizedFunc(NotMemorizedFunc): async def call_and_shelve(self, *args, **kwargs): return NotMemorizedResult(await self.func(*args, **kwargs)) ############################################################################### # class `MemorizedFunc` ############################################################################### class MemorizedFunc(Logger): """Callable object decorating a function for caching its return value each time it is called. Methods are provided to inspect the cache or clean it. Attributes ---------- func: callable The original, undecorated, function. location: string The location of joblib cache. Depends on the store backend used. backend: str Type of store backend for reading/writing cache files. Default is 'local', in which case the location is the path to a disk storage. ignore: list or None List of variable names to ignore when choosing whether to recompute. mmap_mode: {None, 'r+', 'r', 'w+', 'c'} The memmapping mode used when loading from cache numpy arrays. See numpy.load for the meaning of the different values. compress: boolean, or integer Whether to zip the stored data on disk. If an integer is given, it should be between 1 and 9, and sets the amount of compression. Note that compressed arrays cannot be read by memmapping. verbose: int, optional The verbosity flag, controls messages that are issued as the function is evaluated. cache_validation_callback: callable, optional Callable to check if a result in cache is valid or is to be recomputed. When the function is called with arguments for which a cache exists, the callback is called with the cache entry's metadata as its sole argument. If it returns True, the cached result is returned, else the cache for these arguments is cleared and the result is recomputed. """ # ------------------------------------------------------------------------ # Public interface # ------------------------------------------------------------------------ def __init__(self, func, location, backend='local', ignore=None, mmap_mode=None, compress=False, verbose=1, timestamp=None, cache_validation_callback=None): Logger.__init__(self) self.mmap_mode = mmap_mode self.compress = compress self.func = func self.cache_validation_callback = cache_validation_callback self.func_id = _build_func_identifier(func) self.ignore = ignore if ignore is not None else [] self._verbose = verbose # retrieve store object from backend type and location. self.store_backend = _store_backend_factory(backend, location, verbose=verbose, backend_options=dict( compress=compress, mmap_mode=mmap_mode), ) if self.store_backend is not None: # Create func directory on demand. self.store_backend.store_cached_func_code([self.func_id]) self.timestamp = timestamp if timestamp is not None else time.time() try: functools.update_wrapper(self, func) except Exception: pass # Objects like ufunc don't like that if inspect.isfunction(func): doc = pydoc.TextDoc().document(func) # Remove blank line doc = doc.replace('\n', '\n\n', 1) # Strip backspace-overprints for compatibility with autodoc doc = re.sub('\x08.', '', doc) else: # Pydoc does a poor job on other objects doc = func.__doc__ self.__doc__ = 'Memoized version of %s' % doc self._func_code_info = None self._func_code_id = None def _is_in_cache_and_valid(self, call_id): """Check if the function call is cached and valid for given arguments. - Compare the function code with the one from the cached function, asserting if it has changed. - Check if the function call is present in the cache. - Call `cache_validation_callback` for user define cache validation. Returns True if the function call is in cache and can be used, and returns False otherwise. """ # Check if the code of the function has changed if not self._check_previous_func_code(stacklevel=4): return False # Check if this specific call is in the cache if not self.store_backend.contains_item(call_id): return False # Call the user defined cache validation callback metadata = self.store_backend.get_metadata(call_id) if (self.cache_validation_callback is not None and not self.cache_validation_callback(metadata)): self.store_backend.clear_item(call_id) return False return True def _cached_call(self, args, kwargs, shelving): """Call wrapped function and cache result, or read cache if available. This function returns the wrapped function output or a reference to the cached result. Arguments: ---------- args, kwargs: list and dict input arguments for wrapped function shelving: bool True when called via the call_and_shelve function. Returns ------- Output of the wrapped function if shelving is false, or a MemorizedResult reference to the value if shelving is true. """ args_id = self._get_args_id(*args, **kwargs) call_id = (self.func_id, args_id) _, func_name = get_func_name(self.func) func_info = self.store_backend.get_cached_func_info([self.func_id]) location = func_info['location'] if self._verbose >= 20: logging.basicConfig(level=logging.INFO) _, signature = format_signature(self.func, *args, **kwargs) self.info( textwrap.dedent( f""" Querying {func_name} with signature {signature}. (argument hash {args_id}) The store location is {location}. """ ) ) # Compare the function code with the previous to see if the # function code has changed and check if the results are present in # the cache. if self._is_in_cache_and_valid(call_id): if shelving: return self._get_memorized_result(call_id) try: start_time = time.time() output = self._load_item(call_id) if self._verbose > 4: self._print_duration(time.time() - start_time, context='cache loaded ') return output except Exception: # XXX: Should use an exception logger _, signature = format_signature(self.func, *args, **kwargs) self.warn('Exception while loading results for ' '{}\n {}'.format(signature, traceback.format_exc())) if self._verbose > 10: self.warn( f"Computing func {func_name}, argument hash {args_id} " f"in location {location}" ) return self._call(call_id, args, kwargs, shelving) @property def func_code_info(self): # 3-tuple property containing: the function source code, source file, # and first line of the code inside the source file if hasattr(self.func, '__code__'): if self._func_code_id is None: self._func_code_id = id(self.func.__code__) elif id(self.func.__code__) != self._func_code_id: # Be robust to dynamic reassignments of self.func.__code__ self._func_code_info = None if self._func_code_info is None: # Cache the source code of self.func . Provided that get_func_code # (which should be called once on self) gets called in the process # in which self.func was defined, this caching mechanism prevents # undesired cache clearing when the cached function is called in # an environment where the introspection utilities get_func_code # relies on do not work (typically, in joblib child processes). # See #1035 for more info # TODO (pierreglaser): do the same with get_func_name? self._func_code_info = get_func_code(self.func) return self._func_code_info def call_and_shelve(self, *args, **kwargs): """Call wrapped function, cache result and return a reference. This method returns a reference to the cached result instead of the result itself. The reference object is small and pickeable, allowing to send or store it easily. Call .get() on reference object to get result. Returns ------- cached_result: MemorizedResult or NotMemorizedResult reference to the value returned by the wrapped function. The class "NotMemorizedResult" is used when there is no cache activated (e.g. location=None in Memory). """ return self._cached_call(args, kwargs, shelving=True) def __call__(self, *args, **kwargs): return self._cached_call(args, kwargs, shelving=False) def __getstate__(self): # Make sure self.func's source is introspected prior to being pickled - # code introspection utilities typically do not work inside child # processes _ = self.func_code_info # We don't store the timestamp when pickling, to avoid the hash # depending from it. state = self.__dict__.copy() state['timestamp'] = None # Invalidate the code id as id(obj) will be different in the child state['_func_code_id'] = None return state def check_call_in_cache(self, *args, **kwargs): """Check if function call is in the memory cache. Does not call the function or do any work besides func inspection and arg hashing. Returns ------- is_call_in_cache: bool Whether or not the result of the function has been cached for the input arguments that have been passed. """ call_id = (self.func_id, self._get_args_id(*args, **kwargs)) return self.store_backend.contains_item(call_id) # ------------------------------------------------------------------------ # Private interface # ------------------------------------------------------------------------ def _get_args_id(self, *args, **kwargs): """Return the input parameter hash of a result.""" return hashing.hash(filter_args(self.func, self.ignore, args, kwargs), coerce_mmap=self.mmap_mode is not None) def _hash_func(self): """Hash a function to key the online cache""" func_code_h = hash(getattr(self.func, '__code__', None)) return id(self.func), hash(self.func), func_code_h def _write_func_code(self, func_code, first_line): """ Write the function code and the filename to a file. """ # We store the first line because the filename and the function # name is not always enough to identify a function: people # sometimes have several functions named the same way in a # file. This is bad practice, but joblib should be robust to bad # practice. func_code = u'%s %i\n%s' % (FIRST_LINE_TEXT, first_line, func_code) self.store_backend.store_cached_func_code([self.func_id], func_code) # Also store in the in-memory store of function hashes is_named_callable = (hasattr(self.func, '__name__') and self.func.__name__ != '<lambda>') if is_named_callable: # Don't do this for lambda functions or strange callable # objects, as it ends up being too fragile func_hash = self._hash_func() try: _FUNCTION_HASHES[self.func] = func_hash except TypeError: # Some callable are not hashable pass def _check_previous_func_code(self, stacklevel=2): """ stacklevel is the depth a which this function is called, to issue useful warnings to the user. """ # First check if our function is in the in-memory store. # Using the in-memory store not only makes things faster, but it # also renders us robust to variations of the files when the # in-memory version of the code does not vary try: if self.func in _FUNCTION_HASHES: # We use as an identifier the id of the function and its # hash. This is more likely to falsely change than have hash # collisions, thus we are on the safe side. func_hash = self._hash_func() if func_hash == _FUNCTION_HASHES[self.func]: return True except TypeError: # Some callables are not hashable pass # Here, we go through some effort to be robust to dynamically # changing code and collision. We cannot inspect.getsource # because it is not reliable when using IPython's magic "%run". func_code, source_file, first_line = self.func_code_info try: old_func_code, old_first_line = extract_first_line( self.store_backend.get_cached_func_code([self.func_id])) except (IOError, OSError): # some backend can also raise OSError self._write_func_code(func_code, first_line) return False if old_func_code == func_code: return True # We have differing code, is this because we are referring to # different functions, or because the function we are referring to has # changed? _, func_name = get_func_name(self.func, resolv_alias=False, win_characters=False) if old_first_line == first_line == -1 or func_name == '<lambda>': if not first_line == -1: func_description = ("{0} ({1}:{2})" .format(func_name, source_file, first_line)) else: func_description = func_name warnings.warn(JobLibCollisionWarning( "Cannot detect name collisions for function '{0}'" .format(func_description)), stacklevel=stacklevel) # Fetch the code at the old location and compare it. If it is the # same than the code store, we have a collision: the code in the # file has not changed, but the name we have is pointing to a new # code block. if not old_first_line == first_line and source_file is not None: if os.path.exists(source_file): _, func_name = get_func_name(self.func, resolv_alias=False) num_lines = len(func_code.split('\n')) with tokenize.open(source_file) as f: on_disk_func_code = f.readlines()[ old_first_line - 1:old_first_line - 1 + num_lines - 1] on_disk_func_code = ''.join(on_disk_func_code) possible_collision = (on_disk_func_code.rstrip() == old_func_code.rstrip()) else: possible_collision = source_file.startswith('<doctest ') if possible_collision: warnings.warn(JobLibCollisionWarning( 'Possible name collisions between functions ' "'%s' (%s:%i) and '%s' (%s:%i)" % (func_name, source_file, old_first_line, func_name, source_file, first_line)), stacklevel=stacklevel) # The function has changed, wipe the cache directory. # XXX: Should be using warnings, and giving stacklevel if self._verbose > 10: _, func_name = get_func_name(self.func, resolv_alias=False) self.warn("Function {0} (identified by {1}) has changed" ".".format(func_name, self.func_id)) self.clear(warn=True) return False def clear(self, warn=True): """Empty the function's cache.""" func_id = self.func_id if self._verbose > 0 and warn: self.warn("Clearing function cache identified by %s" % func_id) self.store_backend.clear_path([func_id, ]) func_code, _, first_line = self.func_code_info self._write_func_code(func_code, first_line) def call(self, *args, **kwargs): """Force the execution of the function with the given arguments. The output values will be persisted, i.e., the cache will be updated with any new values. Parameters ---------- *args: arguments The arguments. **kwargs: keyword arguments Keyword arguments. Returns ------- output : object The output of the function call. """ call_id = (self.func_id, self._get_args_id(*args, **kwargs)) return self._call(call_id, args, kwargs) def _call(self, call_id, args, kwargs, shelving=False): self._before_call(args, kwargs) start_time = time.time() output = self.func(*args, **kwargs) return self._after_call(call_id, args, kwargs, shelving, output, start_time) def _before_call(self, args, kwargs): if self._verbose > 0: print(format_call(self.func, args, kwargs)) def _after_call(self, call_id, args, kwargs, shelving, output, start_time): self.store_backend.dump_item(call_id, output, verbose=self._verbose) duration = time.time() - start_time if self._verbose > 0: self._print_duration(duration) metadata = self._persist_input(duration, call_id, args, kwargs) if shelving: return self._get_memorized_result(call_id, metadata) if self.mmap_mode is not None: # Memmap the output at the first call to be consistent with # later calls output = self._load_item(call_id, metadata) return output def _persist_input(self, duration, call_id, args, kwargs, this_duration_limit=0.5): """ Save a small summary of the call using json format in the output directory. output_dir: string directory where to write metadata. duration: float time taken by hashing input arguments, calling the wrapped function and persisting its output. args, kwargs: list and dict input arguments for wrapped function this_duration_limit: float Max execution time for this function before issuing a warning. """ start_time = time.time() argument_dict = filter_args(self.func, self.ignore, args, kwargs) input_repr = dict((k, repr(v)) for k, v in argument_dict.items()) # This can fail due to race-conditions with multiple # concurrent joblibs removing the file or the directory metadata = { "duration": duration, "input_args": input_repr, "time": start_time, } self.store_backend.store_metadata(call_id, metadata) this_duration = time.time() - start_time if this_duration > this_duration_limit: # This persistence should be fast. It will not be if repr() takes # time and its output is large, because json.dump will have to # write a large file. This should not be an issue with numpy arrays # for which repr() always output a short representation, but can # be with complex dictionaries. Fixing the problem should be a # matter of replacing repr() above by something smarter. warnings.warn("Persisting input arguments took %.2fs to run." "If this happens often in your code, it can cause " "performance problems " "(results will be correct in all cases). " "The reason for this is probably some large input " "arguments for a wrapped function." % this_duration, stacklevel=5) return metadata def _get_memorized_result(self, call_id, metadata=None): return MemorizedResult(self.store_backend, call_id, metadata=metadata, timestamp=self.timestamp, verbose=self._verbose - 1) def _load_item(self, call_id, metadata=None): return self.store_backend.load_item(call_id, metadata=metadata, timestamp=self.timestamp, verbose=self._verbose) def _print_duration(self, duration, context=''): _, name = get_func_name(self.func) msg = f"{name} {context}- {format_time(duration)}" print(max(0, (80 - len(msg))) * '_' + msg) # ------------------------------------------------------------------------ # Private `object` interface # ------------------------------------------------------------------------ def __repr__(self): return '{class_name}(func={func}, location={location})'.format( class_name=self.__class__.__name__, func=self.func, location=self.store_backend.location,) ############################################################################### # class `AsyncMemorizedFunc` ############################################################################### class AsyncMemorizedFunc(MemorizedFunc): async def __call__(self, *args, **kwargs): out = super().__call__(*args, **kwargs) return await out if asyncio.iscoroutine(out) else out async def call_and_shelve(self, *args, **kwargs): out = super().call_and_shelve(*args, **kwargs) return await out if asyncio.iscoroutine(out) else out async def call(self, *args, **kwargs): out = super().call(*args, **kwargs) return await out if asyncio.iscoroutine(out) else out async def _call(self, call_id, args, kwargs, shelving=False): self._before_call(args, kwargs) start_time = time.time() output = await self.func(*args, **kwargs) return self._after_call(call_id, args, kwargs, shelving, output, start_time) ############################################################################### # class `Memory` ############################################################################### class Memory(Logger): """ A context object for caching a function's return value each time it is called with the same input arguments. All values are cached on the filesystem, in a deep directory structure. Read more in the :ref:`User Guide <memory>`. Parameters ---------- location: str, pathlib.Path or None The path of the base directory to use as a data store or None. If None is given, no caching is done and the Memory object is completely transparent. This option replaces cachedir since version 0.12. backend: str, optional Type of store backend for reading/writing cache files. Default: 'local'. The 'local' backend is using regular filesystem operations to manipulate data (open, mv, etc) in the backend. mmap_mode: {None, 'r+', 'r', 'w+', 'c'}, optional The memmapping mode used when loading from cache numpy arrays. See numpy.load for the meaning of the arguments. compress: boolean, or integer, optional Whether to zip the stored data on disk. If an integer is given, it should be between 1 and 9, and sets the amount of compression. Note that compressed arrays cannot be read by memmapping. verbose: int, optional Verbosity flag, controls the debug messages that are issued as functions are evaluated. bytes_limit: int | str, optional Limit in bytes of the size of the cache. By default, the size of the cache is unlimited. When reducing the size of the cache, ``joblib`` keeps the most recently accessed items first. If a str is passed, it is converted to a number of bytes using units { K | M | G} for kilo, mega, giga. **Note:** You need to call :meth:`joblib.Memory.reduce_size` to actually reduce the cache size to be less than ``bytes_limit``. **Note:** This argument has been deprecated. One should give the value of ``bytes_limit`` directly in :meth:`joblib.Memory.reduce_size`. backend_options: dict, optional Contains a dictionary of named parameters used to configure the store backend. """ # ------------------------------------------------------------------------ # Public interface # ------------------------------------------------------------------------ def __init__(self, location=None, backend='local', mmap_mode=None, compress=False, verbose=1, bytes_limit=None, backend_options=None): Logger.__init__(self) self._verbose = verbose self.mmap_mode = mmap_mode self.timestamp = time.time() if bytes_limit is not None: warnings.warn( "bytes_limit argument has been deprecated. It will be removed " "in version 1.5. Please pass its value directly to " "Memory.reduce_size.", category=DeprecationWarning ) self.bytes_limit = bytes_limit self.backend = backend self.compress = compress if backend_options is None: backend_options = {} self.backend_options = backend_options if compress and mmap_mode is not None: warnings.warn('Compressed results cannot be memmapped', stacklevel=2) self.location = location if isinstance(location, str): location = os.path.join(location, 'joblib') self.store_backend = _store_backend_factory( backend, location, verbose=self._verbose, backend_options=dict(compress=compress, mmap_mode=mmap_mode, **backend_options)) def cache(self, func=None, ignore=None, verbose=None, mmap_mode=False, cache_validation_callback=None): """ Decorates the given function func to only compute its return value for input arguments not cached on disk. Parameters ---------- func: callable, optional The function to be decorated ignore: list of strings A list of arguments name to ignore in the hashing verbose: integer, optional The verbosity mode of the function. By default that of the memory object is used. mmap_mode: {None, 'r+', 'r', 'w+', 'c'}, optional The memmapping mode used when loading from cache numpy arrays. See numpy.load for the meaning of the arguments. By default that of the memory object is used. cache_validation_callback: callable, optional Callable to validate whether or not the cache is valid. When the cached function is called with arguments for which a cache exists, this callable is called with the metadata of the cached result as its sole argument. If it returns True, then the cached result is returned, else the cache for these arguments is cleared and recomputed. Returns ------- decorated_func: MemorizedFunc object The returned object is a MemorizedFunc object, that is callable (behaves like a function), but offers extra methods for cache lookup and management. See the documentation for :class:`joblib.memory.MemorizedFunc`. """ if (cache_validation_callback is not None and not callable(cache_validation_callback)): raise ValueError( "cache_validation_callback needs to be callable. " f"Got {cache_validation_callback}." ) if func is None: # Partial application, to be able to specify extra keyword # arguments in decorators return functools.partial( self.cache, ignore=ignore, mmap_mode=mmap_mode, verbose=verbose, cache_validation_callback=cache_validation_callback ) if self.store_backend is None: cls = (AsyncNotMemorizedFunc if asyncio.iscoroutinefunction(func) else NotMemorizedFunc) return cls(func) if verbose is None: verbose = self._verbose if mmap_mode is False: mmap_mode = self.mmap_mode if isinstance(func, MemorizedFunc): func = func.func cls = (AsyncMemorizedFunc if asyncio.iscoroutinefunction(func) else MemorizedFunc) return cls( func, location=self.store_backend, backend=self.backend, ignore=ignore, mmap_mode=mmap_mode, compress=self.compress, verbose=verbose, timestamp=self.timestamp, cache_validation_callback=cache_validation_callback ) def clear(self, warn=True): """ Erase the complete cache directory. """ if warn: self.warn('Flushing completely the cache') if self.store_backend is not None: self.store_backend.clear() # As the cache is completely clear, make sure the _FUNCTION_HASHES # cache is also reset. Else, for a function that is present in this # table, results cached after this clear will be have cache miss # as the function code is not re-written. _FUNCTION_HASHES.clear() def reduce_size(self, bytes_limit=None, items_limit=None, age_limit=None): """Remove cache elements to make the cache fit its limits. The limitation can impose that the cache size fits in ``bytes_limit``, that the number of cache items is no more than ``items_limit``, and that all files in cache are not older than ``age_limit``. Parameters ---------- bytes_limit: int | str, optional Limit in bytes of the size of the cache. By default, the size of the cache is unlimited. When reducing the size of the cache, ``joblib`` keeps the most recently accessed items first. If a str is passed, it is converted to a number of bytes using units { K | M | G} for kilo, mega, giga. items_limit: int, optional Number of items to limit the cache to. By default, the number of items in the cache is unlimited. When reducing the size of the cache, ``joblib`` keeps the most recently accessed items first. age_limit: datetime.timedelta, optional Maximum age of items to limit the cache to. When reducing the size of the cache, any items last accessed more than the given length of time ago are deleted. """ if bytes_limit is None: bytes_limit = self.bytes_limit if self.store_backend is None: # No cached results, this function does nothing. return if bytes_limit is None and items_limit is None and age_limit is None: # No limitation to impose, returning return # Defers the actual limits enforcing to the store backend. self.store_backend.enforce_store_limits( bytes_limit, items_limit, age_limit ) def eval(self, func, *args, **kwargs): """ Eval function func with arguments `*args` and `**kwargs`, in the context of the memory. This method works similarly to the builtin `apply`, except that the function is called only if the cache is not up to date. """ if self.store_backend is None: return func(*args, **kwargs) return self.cache(func)(*args, **kwargs) # ------------------------------------------------------------------------ # Private `object` interface # ------------------------------------------------------------------------ def __repr__(self): return '{class_name}(location={location})'.format( class_name=self.__class__.__name__, location=(None if self.store_backend is None else self.store_backend.location)) def __getstate__(self): """ We don't store the timestamp when pickling, to avoid the hash depending from it. """ state = self.__dict__.copy() state['timestamp'] = None return state ############################################################################### # cache_validation_callback helpers ############################################################################### def expires_after(days=0, seconds=0, microseconds=0, milliseconds=0, minutes=0, hours=0, weeks=0): """Helper cache_validation_callback to force recompute after a duration. Parameters ---------- days, seconds, microseconds, milliseconds, minutes, hours, weeks: numbers argument passed to a timedelta. """ delta = datetime.timedelta( days=days, seconds=seconds, microseconds=microseconds, milliseconds=milliseconds, minutes=minutes, hours=hours, weeks=weeks ) def cache_validation_callback(metadata): computation_age = time.time() - metadata['time'] return computation_age < delta.total_seconds() return cache_validation_callback PKaZZZju�iijoblib/numpy_pickle.py"""Utilities for fast persistence of big data, with optional compression.""" # Author: Gael Varoquaux <gael dot varoquaux at normalesup dot org> # Copyright (c) 2009 Gael Varoquaux # License: BSD Style, 3 clauses. import pickle import os import warnings import io from pathlib import Path from .compressor import lz4, LZ4_NOT_INSTALLED_ERROR from .compressor import _COMPRESSORS, register_compressor, BinaryZlibFile from .compressor import (ZlibCompressorWrapper, GzipCompressorWrapper, BZ2CompressorWrapper, LZMACompressorWrapper, XZCompressorWrapper, LZ4CompressorWrapper) from .numpy_pickle_utils import Unpickler, Pickler from .numpy_pickle_utils import _read_fileobject, _write_fileobject from .numpy_pickle_utils import _read_bytes, BUFFER_SIZE from .numpy_pickle_utils import _ensure_native_byte_order from .numpy_pickle_compat import load_compatibility from .numpy_pickle_compat import NDArrayWrapper # For compatibility with old versions of joblib, we need ZNDArrayWrapper # to be visible in the current namespace. # Explicitly skipping next line from flake8 as it triggers an F401 warning # which we don't care. from .numpy_pickle_compat import ZNDArrayWrapper # noqa from .backports import make_memmap # Register supported compressors register_compressor('zlib', ZlibCompressorWrapper()) register_compressor('gzip', GzipCompressorWrapper()) register_compressor('bz2', BZ2CompressorWrapper()) register_compressor('lzma', LZMACompressorWrapper()) register_compressor('xz', XZCompressorWrapper()) register_compressor('lz4', LZ4CompressorWrapper()) ############################################################################### # Utility objects for persistence. # For convenience, 16 bytes are used to be sure to cover all the possible # dtypes' alignments. For reference, see: # https://numpy.org/devdocs/dev/alignment.html NUMPY_ARRAY_ALIGNMENT_BYTES = 16 class NumpyArrayWrapper(object): """An object to be persisted instead of numpy arrays. This object is used to hack into the pickle machinery and read numpy array data from our custom persistence format. More precisely, this object is used for: * carrying the information of the persisted array: subclass, shape, order, dtype. Those ndarray metadata are used to correctly reconstruct the array with low level numpy functions. * determining if memmap is allowed on the array. * reading the array bytes from a file. * reading the array using memorymap from a file. * writing the array bytes to a file. Attributes ---------- subclass: numpy.ndarray subclass Determine the subclass of the wrapped array. shape: numpy.ndarray shape Determine the shape of the wrapped array. order: {'C', 'F'} Determine the order of wrapped array data. 'C' is for C order, 'F' is for fortran order. dtype: numpy.ndarray dtype Determine the data type of the wrapped array. allow_mmap: bool Determine if memory mapping is allowed on the wrapped array. Default: False. """ def __init__(self, subclass, shape, order, dtype, allow_mmap=False, numpy_array_alignment_bytes=NUMPY_ARRAY_ALIGNMENT_BYTES): """Constructor. Store the useful information for later.""" self.subclass = subclass self.shape = shape self.order = order self.dtype = dtype self.allow_mmap = allow_mmap # We make numpy_array_alignment_bytes an instance attribute to allow us # to change our mind about the default alignment and still load the old # pickles (with the previous alignment) correctly self.numpy_array_alignment_bytes = numpy_array_alignment_bytes def safe_get_numpy_array_alignment_bytes(self): # NumpyArrayWrapper instances loaded from joblib <= 1.1 pickles don't # have an numpy_array_alignment_bytes attribute return getattr(self, 'numpy_array_alignment_bytes', None) def write_array(self, array, pickler): """Write array bytes to pickler file handle. This function is an adaptation of the numpy write_array function available in version 1.10.1 in numpy/lib/format.py. """ # Set buffer size to 16 MiB to hide the Python loop overhead. buffersize = max(16 * 1024 ** 2 // array.itemsize, 1) if array.dtype.hasobject: # We contain Python objects so we cannot write out the data # directly. Instead, we will pickle it out with version 2 of the # pickle protocol. pickle.dump(array, pickler.file_handle, protocol=2) else: numpy_array_alignment_bytes = \ self.safe_get_numpy_array_alignment_bytes() if numpy_array_alignment_bytes is not None: current_pos = pickler.file_handle.tell() pos_after_padding_byte = current_pos + 1 padding_length = numpy_array_alignment_bytes - ( pos_after_padding_byte % numpy_array_alignment_bytes) # A single byte is written that contains the padding length in # bytes padding_length_byte = int.to_bytes( padding_length, length=1, byteorder='little') pickler.file_handle.write(padding_length_byte) if padding_length != 0: padding = b'\xff' * padding_length pickler.file_handle.write(padding) for chunk in pickler.np.nditer(array, flags=['external_loop', 'buffered', 'zerosize_ok'], buffersize=buffersize, order=self.order): pickler.file_handle.write(chunk.tobytes('C')) def read_array(self, unpickler): """Read array from unpickler file handle. This function is an adaptation of the numpy read_array function available in version 1.10.1 in numpy/lib/format.py. """ if len(self.shape) == 0: count = 1 else: # joblib issue #859: we cast the elements of self.shape to int64 to # prevent a potential overflow when computing their product. shape_int64 = [unpickler.np.int64(x) for x in self.shape] count = unpickler.np.multiply.reduce(shape_int64) # Now read the actual data. if self.dtype.hasobject: # The array contained Python objects. We need to unpickle the data. array = pickle.load(unpickler.file_handle) else: numpy_array_alignment_bytes = \ self.safe_get_numpy_array_alignment_bytes() if numpy_array_alignment_bytes is not None: padding_byte = unpickler.file_handle.read(1) padding_length = int.from_bytes( padding_byte, byteorder='little') if padding_length != 0: unpickler.file_handle.read(padding_length) # This is not a real file. We have to read it the # memory-intensive way. # crc32 module fails on reads greater than 2 ** 32 bytes, # breaking large reads from gzip streams. Chunk reads to # BUFFER_SIZE bytes to avoid issue and reduce memory overhead # of the read. In non-chunked case count < max_read_count, so # only one read is performed. max_read_count = BUFFER_SIZE // min(BUFFER_SIZE, self.dtype.itemsize) array = unpickler.np.empty(count, dtype=self.dtype) for i in range(0, count, max_read_count): read_count = min(max_read_count, count - i) read_size = int(read_count * self.dtype.itemsize) data = _read_bytes(unpickler.file_handle, read_size, "array data") array[i:i + read_count] = \ unpickler.np.frombuffer(data, dtype=self.dtype, count=read_count) del data if self.order == 'F': array.shape = self.shape[::-1] array = array.transpose() else: array.shape = self.shape # Detect byte order mismatch and swap as needed. return _ensure_native_byte_order(array) def read_mmap(self, unpickler): """Read an array using numpy memmap.""" current_pos = unpickler.file_handle.tell() offset = current_pos numpy_array_alignment_bytes = \ self.safe_get_numpy_array_alignment_bytes() if numpy_array_alignment_bytes is not None: padding_byte = unpickler.file_handle.read(1) padding_length = int.from_bytes(padding_byte, byteorder='little') # + 1 is for the padding byte offset += padding_length + 1 if unpickler.mmap_mode == 'w+': unpickler.mmap_mode = 'r+' marray = make_memmap(unpickler.filename, dtype=self.dtype, shape=self.shape, order=self.order, mode=unpickler.mmap_mode, offset=offset) # update the offset so that it corresponds to the end of the read array unpickler.file_handle.seek(offset + marray.nbytes) if (numpy_array_alignment_bytes is None and current_pos % NUMPY_ARRAY_ALIGNMENT_BYTES != 0): message = ( f'The memmapped array {marray} loaded from the file ' f'{unpickler.file_handle.name} is not byte aligned. ' 'This may cause segmentation faults if this memmapped array ' 'is used in some libraries like BLAS or PyTorch. ' 'To get rid of this warning, regenerate your pickle file ' 'with joblib >= 1.2.0. ' 'See https://github.com/joblib/joblib/issues/563 ' 'for more details' ) warnings.warn(message) return _ensure_native_byte_order(marray) def read(self, unpickler): """Read the array corresponding to this wrapper. Use the unpickler to get all information to correctly read the array. Parameters ---------- unpickler: NumpyUnpickler Returns ------- array: numpy.ndarray """ # When requested, only use memmap mode if allowed. if unpickler.mmap_mode is not None and self.allow_mmap: array = self.read_mmap(unpickler) else: array = self.read_array(unpickler) # Manage array subclass case if (hasattr(array, '__array_prepare__') and self.subclass not in (unpickler.np.ndarray, unpickler.np.memmap)): # We need to reconstruct another subclass new_array = unpickler.np.core.multiarray._reconstruct( self.subclass, (0,), 'b') return new_array.__array_prepare__(array) else: return array ############################################################################### # Pickler classes class NumpyPickler(Pickler): """A pickler to persist big data efficiently. The main features of this object are: * persistence of numpy arrays in a single file. * optional compression with a special care on avoiding memory copies. Attributes ---------- fp: file File object handle used for serializing the input object. protocol: int, optional Pickle protocol used. Default is pickle.DEFAULT_PROTOCOL. """ dispatch = Pickler.dispatch.copy() def __init__(self, fp, protocol=None): self.file_handle = fp self.buffered = isinstance(self.file_handle, BinaryZlibFile) # By default we want a pickle protocol that only changes with # the major python version and not the minor one if protocol is None: protocol = pickle.DEFAULT_PROTOCOL Pickler.__init__(self, self.file_handle, protocol=protocol) # delayed import of numpy, to avoid tight coupling try: import numpy as np except ImportError: np = None self.np = np def _create_array_wrapper(self, array): """Create and returns a numpy array wrapper from a numpy array.""" order = 'F' if (array.flags.f_contiguous and not array.flags.c_contiguous) else 'C' allow_mmap = not self.buffered and not array.dtype.hasobject kwargs = {} try: self.file_handle.tell() except io.UnsupportedOperation: kwargs = {'numpy_array_alignment_bytes': None} wrapper = NumpyArrayWrapper(type(array), array.shape, order, array.dtype, allow_mmap=allow_mmap, **kwargs) return wrapper def save(self, obj): """Subclass the Pickler `save` method. This is a total abuse of the Pickler class in order to use the numpy persistence function `save` instead of the default pickle implementation. The numpy array is replaced by a custom wrapper in the pickle persistence stack and the serialized array is written right after in the file. Warning: the file produced does not follow the pickle format. As such it can not be read with `pickle.load`. """ if self.np is not None and type(obj) in (self.np.ndarray, self.np.matrix, self.np.memmap): if type(obj) is self.np.memmap: # Pickling doesn't work with memmapped arrays obj = self.np.asanyarray(obj) # The array wrapper is pickled instead of the real array. wrapper = self._create_array_wrapper(obj) Pickler.save(self, wrapper) # A framer was introduced with pickle protocol 4 and we want to # ensure the wrapper object is written before the numpy array # buffer in the pickle file. # See https://www.python.org/dev/peps/pep-3154/#framing to get # more information on the framer behavior. if self.proto >= 4: self.framer.commit_frame(force=True) # And then array bytes are written right after the wrapper. wrapper.write_array(obj, self) return return Pickler.save(self, obj) class NumpyUnpickler(Unpickler): """A subclass of the Unpickler to unpickle our numpy pickles. Attributes ---------- mmap_mode: str The memorymap mode to use for reading numpy arrays. file_handle: file_like File object to unpickle from. filename: str Name of the file to unpickle from. It should correspond to file_handle. This parameter is required when using mmap_mode. np: module Reference to numpy module if numpy is installed else None. """ dispatch = Unpickler.dispatch.copy() def __init__(self, filename, file_handle, mmap_mode=None): # The next line is for backward compatibility with pickle generated # with joblib versions less than 0.10. self._dirname = os.path.dirname(filename) self.mmap_mode = mmap_mode self.file_handle = file_handle # filename is required for numpy mmap mode. self.filename = filename self.compat_mode = False Unpickler.__init__(self, self.file_handle) try: import numpy as np except ImportError: np = None self.np = np def load_build(self): """Called to set the state of a newly created object. We capture it to replace our place-holder objects, NDArrayWrapper or NumpyArrayWrapper, by the array we are interested in. We replace them directly in the stack of pickler. NDArrayWrapper is used for backward compatibility with joblib <= 0.9. """ Unpickler.load_build(self) # For backward compatibility, we support NDArrayWrapper objects. if isinstance(self.stack[-1], (NDArrayWrapper, NumpyArrayWrapper)): if self.np is None: raise ImportError("Trying to unpickle an ndarray, " "but numpy didn't import correctly") array_wrapper = self.stack.pop() # If any NDArrayWrapper is found, we switch to compatibility mode, # this will be used to raise a DeprecationWarning to the user at # the end of the unpickling. if isinstance(array_wrapper, NDArrayWrapper): self.compat_mode = True self.stack.append(array_wrapper.read(self)) # Be careful to register our new method. dispatch[pickle.BUILD[0]] = load_build ############################################################################### # Utility functions def dump(value, filename, compress=0, protocol=None, cache_size=None): """Persist an arbitrary Python object into one file. Read more in the :ref:`User Guide <persistence>`. Parameters ---------- value: any Python object The object to store to disk. filename: str, pathlib.Path, or file object. The file object or path of the file in which it is to be stored. The compression method corresponding to one of the supported filename extensions ('.z', '.gz', '.bz2', '.xz' or '.lzma') will be used automatically. compress: int from 0 to 9 or bool or 2-tuple, optional Optional compression level for the data. 0 or False is no compression. Higher value means more compression, but also slower read and write times. Using a value of 3 is often a good compromise. See the notes for more details. If compress is True, the compression level used is 3. If compress is a 2-tuple, the first element must correspond to a string between supported compressors (e.g 'zlib', 'gzip', 'bz2', 'lzma' 'xz'), the second element must be an integer from 0 to 9, corresponding to the compression level. protocol: int, optional Pickle protocol, see pickle.dump documentation for more details. cache_size: positive int, optional This option is deprecated in 0.10 and has no effect. Returns ------- filenames: list of strings The list of file names in which the data is stored. If compress is false, each array is stored in a different file. See Also -------- joblib.load : corresponding loader Notes ----- Memmapping on load cannot be used for compressed files. Thus using compression can significantly slow down loading. In addition, compressed files take up extra memory during dump and load. """ if Path is not None and isinstance(filename, Path): filename = str(filename) is_filename = isinstance(filename, str) is_fileobj = hasattr(filename, "write") compress_method = 'zlib' # zlib is the default compression method. if compress is True: # By default, if compress is enabled, we want the default compress # level of the compressor. compress_level = None elif isinstance(compress, tuple): # a 2-tuple was set in compress if len(compress) != 2: raise ValueError( 'Compress argument tuple should contain exactly 2 elements: ' '(compress method, compress level), you passed {}' .format(compress)) compress_method, compress_level = compress elif isinstance(compress, str): compress_method = compress compress_level = None # Use default compress level compress = (compress_method, compress_level) else: compress_level = compress if compress_method == 'lz4' and lz4 is None: raise ValueError(LZ4_NOT_INSTALLED_ERROR) if (compress_level is not None and compress_level is not False and compress_level not in range(10)): # Raising an error if a non valid compress level is given. raise ValueError( 'Non valid compress level given: "{}". Possible values are ' '{}.'.format(compress_level, list(range(10)))) if compress_method not in _COMPRESSORS: # Raising an error if an unsupported compression method is given. raise ValueError( 'Non valid compression method given: "{}". Possible values are ' '{}.'.format(compress_method, _COMPRESSORS)) if not is_filename and not is_fileobj: # People keep inverting arguments, and the resulting error is # incomprehensible raise ValueError( 'Second argument should be a filename or a file-like object, ' '%s (type %s) was given.' % (filename, type(filename)) ) if is_filename and not isinstance(compress, tuple): # In case no explicit compression was requested using both compression # method and level in a tuple and the filename has an explicit # extension, we select the corresponding compressor. # unset the variable to be sure no compression level is set afterwards. compress_method = None for name, compressor in _COMPRESSORS.items(): if filename.endswith(compressor.extension): compress_method = name if compress_method in _COMPRESSORS and compress_level == 0: # we choose the default compress_level in case it was not given # as an argument (using compress). compress_level = None if cache_size is not None: # Cache size is deprecated starting from version 0.10 warnings.warn("Please do not set 'cache_size' in joblib.dump, " "this parameter has no effect and will be removed. " "You used 'cache_size={}'".format(cache_size), DeprecationWarning, stacklevel=2) if compress_level != 0: with _write_fileobject(filename, compress=(compress_method, compress_level)) as f: NumpyPickler(f, protocol=protocol).dump(value) elif is_filename: with open(filename, 'wb') as f: NumpyPickler(f, protocol=protocol).dump(value) else: NumpyPickler(filename, protocol=protocol).dump(value) # If the target container is a file object, nothing is returned. if is_fileobj: return # For compatibility, the list of created filenames (e.g with one element # after 0.10.0) is returned by default. return [filename] def _unpickle(fobj, filename="", mmap_mode=None): """Internal unpickling function.""" # We are careful to open the file handle early and keep it open to # avoid race-conditions on renames. # That said, if data is stored in companion files, which can be # the case with the old persistence format, moving the directory # will create a race when joblib tries to access the companion # files. unpickler = NumpyUnpickler(filename, fobj, mmap_mode=mmap_mode) obj = None try: obj = unpickler.load() if unpickler.compat_mode: warnings.warn("The file '%s' has been generated with a " "joblib version less than 0.10. " "Please regenerate this pickle file." % filename, DeprecationWarning, stacklevel=3) except UnicodeDecodeError as exc: # More user-friendly error message new_exc = ValueError( 'You may be trying to read with ' 'python 3 a joblib pickle generated with python 2. ' 'This feature is not supported by joblib.') new_exc.__cause__ = exc raise new_exc return obj def load_temporary_memmap(filename, mmap_mode, unlink_on_gc_collect): from ._memmapping_reducer import JOBLIB_MMAPS, add_maybe_unlink_finalizer obj = load(filename, mmap_mode) JOBLIB_MMAPS.add(obj.filename) if unlink_on_gc_collect: add_maybe_unlink_finalizer(obj) return obj def load(filename, mmap_mode=None): """Reconstruct a Python object from a file persisted with joblib.dump. Read more in the :ref:`User Guide <persistence>`. WARNING: joblib.load relies on the pickle module and can therefore execute arbitrary Python code. It should therefore never be used to load files from untrusted sources. Parameters ---------- filename: str, pathlib.Path, or file object. The file object or path of the file from which to load the object mmap_mode: {None, 'r+', 'r', 'w+', 'c'}, optional If not None, the arrays are memory-mapped from the disk. This mode has no effect for compressed files. Note that in this case the reconstructed object might no longer match exactly the originally pickled object. Returns ------- result: any Python object The object stored in the file. See Also -------- joblib.dump : function to save an object Notes ----- This function can load numpy array files saved separately during the dump. If the mmap_mode argument is given, it is passed to np.load and arrays are loaded as memmaps. As a consequence, the reconstructed object might not match the original pickled object. Note that if the file was saved with compression, the arrays cannot be memmapped. """ if Path is not None and isinstance(filename, Path): filename = str(filename) if hasattr(filename, "read"): fobj = filename filename = getattr(fobj, 'name', '') with _read_fileobject(fobj, filename, mmap_mode) as fobj: obj = _unpickle(fobj) else: with open(filename, 'rb') as f: with _read_fileobject(f, filename, mmap_mode) as fobj: if isinstance(fobj, str): # if the returned file object is a string, this means we # try to load a pickle file generated with an version of # Joblib so we load it with joblib compatibility function. return load_compatibility(fobj) obj = _unpickle(fobj, filename, mmap_mode) return obj PKaZZZҁK�c!c!joblib/numpy_pickle_compat.py"""Numpy pickle compatibility functions.""" import pickle import os import zlib import inspect from io import BytesIO from .numpy_pickle_utils import _ZFILE_PREFIX from .numpy_pickle_utils import Unpickler from .numpy_pickle_utils import _ensure_native_byte_order def hex_str(an_int): """Convert an int to an hexadecimal string.""" return '{:#x}'.format(an_int) def asbytes(s): if isinstance(s, bytes): return s return s.encode('latin1') _MAX_LEN = len(hex_str(2 ** 64)) _CHUNK_SIZE = 64 * 1024 def read_zfile(file_handle): """Read the z-file and return the content as a string. Z-files are raw data compressed with zlib used internally by joblib for persistence. Backward compatibility is not guaranteed. Do not use for external purposes. """ file_handle.seek(0) header_length = len(_ZFILE_PREFIX) + _MAX_LEN length = file_handle.read(header_length) length = length[len(_ZFILE_PREFIX):] length = int(length, 16) # With python2 and joblib version <= 0.8.4 compressed pickle header is one # character wider so we need to ignore an additional space if present. # Note: the first byte of the zlib data is guaranteed not to be a # space according to # https://tools.ietf.org/html/rfc6713#section-2.1 next_byte = file_handle.read(1) if next_byte != b' ': # The zlib compressed data has started and we need to go back # one byte file_handle.seek(header_length) # We use the known length of the data to tell Zlib the size of the # buffer to allocate. data = zlib.decompress(file_handle.read(), 15, length) assert len(data) == length, ( "Incorrect data length while decompressing %s." "The file could be corrupted." % file_handle) return data def write_zfile(file_handle, data, compress=1): """Write the data in the given file as a Z-file. Z-files are raw data compressed with zlib used internally by joblib for persistence. Backward compatibility is not guaranteed. Do not use for external purposes. """ file_handle.write(_ZFILE_PREFIX) length = hex_str(len(data)) # Store the length of the data file_handle.write(asbytes(length.ljust(_MAX_LEN))) file_handle.write(zlib.compress(asbytes(data), compress)) ############################################################################### # Utility objects for persistence. class NDArrayWrapper(object): """An object to be persisted instead of numpy arrays. The only thing this object does, is to carry the filename in which the array has been persisted, and the array subclass. """ def __init__(self, filename, subclass, allow_mmap=True): """Constructor. Store the useful information for later.""" self.filename = filename self.subclass = subclass self.allow_mmap = allow_mmap def read(self, unpickler): """Reconstruct the array.""" filename = os.path.join(unpickler._dirname, self.filename) # Load the array from the disk # use getattr instead of self.allow_mmap to ensure backward compat # with NDArrayWrapper instances pickled with joblib < 0.9.0 allow_mmap = getattr(self, 'allow_mmap', True) kwargs = {} if allow_mmap: kwargs['mmap_mode'] = unpickler.mmap_mode if "allow_pickle" in inspect.signature(unpickler.np.load).parameters: # Required in numpy 1.16.3 and later to aknowledge the security # risk. kwargs["allow_pickle"] = True array = unpickler.np.load(filename, **kwargs) # Detect byte order mismatch and swap as needed. array = _ensure_native_byte_order(array) # Reconstruct subclasses. This does not work with old # versions of numpy if (hasattr(array, '__array_prepare__') and self.subclass not in (unpickler.np.ndarray, unpickler.np.memmap)): # We need to reconstruct another subclass new_array = unpickler.np.core.multiarray._reconstruct( self.subclass, (0,), 'b') return new_array.__array_prepare__(array) else: return array class ZNDArrayWrapper(NDArrayWrapper): """An object to be persisted instead of numpy arrays. This object store the Zfile filename in which the data array has been persisted, and the meta information to retrieve it. The reason that we store the raw buffer data of the array and the meta information, rather than array representation routine (tobytes) is that it enables us to use completely the strided model to avoid memory copies (a and a.T store as fast). In addition saving the heavy information separately can avoid creating large temporary buffers when unpickling data with large arrays. """ def __init__(self, filename, init_args, state): """Constructor. Store the useful information for later.""" self.filename = filename self.state = state self.init_args = init_args def read(self, unpickler): """Reconstruct the array from the meta-information and the z-file.""" # Here we a simply reproducing the unpickling mechanism for numpy # arrays filename = os.path.join(unpickler._dirname, self.filename) array = unpickler.np.core.multiarray._reconstruct(*self.init_args) with open(filename, 'rb') as f: data = read_zfile(f) state = self.state + (data,) array.__setstate__(state) return array class ZipNumpyUnpickler(Unpickler): """A subclass of the Unpickler to unpickle our numpy pickles.""" dispatch = Unpickler.dispatch.copy() def __init__(self, filename, file_handle, mmap_mode=None): """Constructor.""" self._filename = os.path.basename(filename) self._dirname = os.path.dirname(filename) self.mmap_mode = mmap_mode self.file_handle = self._open_pickle(file_handle) Unpickler.__init__(self, self.file_handle) try: import numpy as np except ImportError: np = None self.np = np def _open_pickle(self, file_handle): return BytesIO(read_zfile(file_handle)) def load_build(self): """Set the state of a newly created object. We capture it to replace our place-holder objects, NDArrayWrapper, by the array we are interested in. We replace them directly in the stack of pickler. """ Unpickler.load_build(self) if isinstance(self.stack[-1], NDArrayWrapper): if self.np is None: raise ImportError("Trying to unpickle an ndarray, " "but numpy didn't import correctly") nd_array_wrapper = self.stack.pop() array = nd_array_wrapper.read(self) self.stack.append(array) dispatch[pickle.BUILD[0]] = load_build def load_compatibility(filename): """Reconstruct a Python object from a file persisted with joblib.dump. This function ensures the compatibility with joblib old persistence format (<= 0.9.3). Parameters ---------- filename: string The name of the file from which to load the object Returns ------- result: any Python object The object stored in the file. See Also -------- joblib.dump : function to save an object Notes ----- This function can load numpy array files saved separately during the dump. """ with open(filename, 'rb') as file_handle: # We are careful to open the file handle early and keep it open to # avoid race-conditions on renames. That said, if data is stored in # companion files, moving the directory will create a race when # joblib tries to access the companion files. unpickler = ZipNumpyUnpickler(filename, file_handle=file_handle) try: obj = unpickler.load() except UnicodeDecodeError as exc: # More user-friendly error message new_exc = ValueError( 'You may be trying to read with ' 'python 3 a joblib pickle generated with python 2. ' 'This feature is not supported by joblib.') new_exc.__cause__ = exc raise new_exc finally: if hasattr(unpickler, 'file_handle'): unpickler.file_handle.close() return obj PKaZZZ{�8<""joblib/numpy_pickle_utils.py"""Utilities for fast persistence of big data, with optional compression.""" # Author: Gael Varoquaux <gael dot varoquaux at normalesup dot org> # Copyright (c) 2009 Gael Varoquaux # License: BSD Style, 3 clauses. import pickle import io import sys import warnings import contextlib from .compressor import _ZFILE_PREFIX from .compressor import _COMPRESSORS try: import numpy as np except ImportError: np = None Unpickler = pickle._Unpickler Pickler = pickle._Pickler xrange = range try: # The python standard library can be built without bz2 so we make bz2 # usage optional. # see https://github.com/scikit-learn/scikit-learn/issues/7526 for more # details. import bz2 except ImportError: bz2 = None # Buffer size used in io.BufferedReader and io.BufferedWriter _IO_BUFFER_SIZE = 1024 ** 2 def _is_raw_file(fileobj): """Check if fileobj is a raw file object, e.g created with open.""" fileobj = getattr(fileobj, 'raw', fileobj) return isinstance(fileobj, io.FileIO) def _get_prefixes_max_len(): # Compute the max prefix len of registered compressors. prefixes = [len(compressor.prefix) for compressor in _COMPRESSORS.values()] prefixes += [len(_ZFILE_PREFIX)] return max(prefixes) def _is_numpy_array_byte_order_mismatch(array): """Check if numpy array is having byte order mismatch""" return ((sys.byteorder == 'big' and (array.dtype.byteorder == '<' or (array.dtype.byteorder == '|' and array.dtype.fields and all(e[0].byteorder == '<' for e in array.dtype.fields.values())))) or (sys.byteorder == 'little' and (array.dtype.byteorder == '>' or (array.dtype.byteorder == '|' and array.dtype.fields and all(e[0].byteorder == '>' for e in array.dtype.fields.values()))))) def _ensure_native_byte_order(array): """Use the byte order of the host while preserving values Does nothing if array already uses the system byte order. """ if _is_numpy_array_byte_order_mismatch(array): array = array.byteswap().view(array.dtype.newbyteorder('=')) return array ############################################################################### # Cache file utilities def _detect_compressor(fileobj): """Return the compressor matching fileobj. Parameters ---------- fileobj: file object Returns ------- str in {'zlib', 'gzip', 'bz2', 'lzma', 'xz', 'compat', 'not-compressed'} """ # Read the magic number in the first bytes of the file. max_prefix_len = _get_prefixes_max_len() if hasattr(fileobj, 'peek'): # Peek allows to read those bytes without moving the cursor in the # file whic. first_bytes = fileobj.peek(max_prefix_len) else: # Fallback to seek if the fileobject is not peekable. first_bytes = fileobj.read(max_prefix_len) fileobj.seek(0) if first_bytes.startswith(_ZFILE_PREFIX): return "compat" else: for name, compressor in _COMPRESSORS.items(): if first_bytes.startswith(compressor.prefix): return name return "not-compressed" def _buffered_read_file(fobj): """Return a buffered version of a read file object.""" return io.BufferedReader(fobj, buffer_size=_IO_BUFFER_SIZE) def _buffered_write_file(fobj): """Return a buffered version of a write file object.""" return io.BufferedWriter(fobj, buffer_size=_IO_BUFFER_SIZE) @contextlib.contextmanager def _read_fileobject(fileobj, filename, mmap_mode=None): """Utility function opening the right fileobject from a filename. The magic number is used to choose between the type of file object to open: * regular file object (default) * zlib file object * gzip file object * bz2 file object * lzma file object (for xz and lzma compressor) Parameters ---------- fileobj: file object compressor: str in {'zlib', 'gzip', 'bz2', 'lzma', 'xz', 'compat', 'not-compressed'} filename: str filename path corresponding to the fileobj parameter. mmap_mode: str memory map mode that should be used to open the pickle file. This parameter is useful to verify that the user is not trying to one with compression. Default: None. Returns ------- a file like object """ # Detect if the fileobj contains compressed data. compressor = _detect_compressor(fileobj) if compressor == 'compat': # Compatibility with old pickle mode: simply return the input # filename "as-is" and let the compatibility function be called by the # caller. warnings.warn("The file '%s' has been generated with a joblib " "version less than 0.10. " "Please regenerate this pickle file." % filename, DeprecationWarning, stacklevel=2) yield filename else: if compressor in _COMPRESSORS: # based on the compressor detected in the file, we open the # correct decompressor file object, wrapped in a buffer. compressor_wrapper = _COMPRESSORS[compressor] inst = compressor_wrapper.decompressor_file(fileobj) fileobj = _buffered_read_file(inst) # Checking if incompatible load parameters with the type of file: # mmap_mode cannot be used with compressed file or in memory buffers # such as io.BytesIO. if mmap_mode is not None: if isinstance(fileobj, io.BytesIO): warnings.warn('In memory persistence is not compatible with ' 'mmap_mode "%(mmap_mode)s" flag passed. ' 'mmap_mode option will be ignored.' % locals(), stacklevel=2) elif compressor != 'not-compressed': warnings.warn('mmap_mode "%(mmap_mode)s" is not compatible ' 'with compressed file %(filename)s. ' '"%(mmap_mode)s" flag will be ignored.' % locals(), stacklevel=2) elif not _is_raw_file(fileobj): warnings.warn('"%(fileobj)r" is not a raw file, mmap_mode ' '"%(mmap_mode)s" flag will be ignored.' % locals(), stacklevel=2) yield fileobj def _write_fileobject(filename, compress=("zlib", 3)): """Return the right compressor file object in write mode.""" compressmethod = compress[0] compresslevel = compress[1] if compressmethod in _COMPRESSORS.keys(): file_instance = _COMPRESSORS[compressmethod].compressor_file( filename, compresslevel=compresslevel) return _buffered_write_file(file_instance) else: file_instance = _COMPRESSORS['zlib'].compressor_file( filename, compresslevel=compresslevel) return _buffered_write_file(file_instance) # Utility functions/variables from numpy required for writing arrays. # We need at least the functions introduced in version 1.9 of numpy. Here, # we use the ones from numpy 1.10.2. BUFFER_SIZE = 2 ** 18 # size of buffer for reading npz files in bytes def _read_bytes(fp, size, error_template="ran out of data"): """Read from file-like object until size bytes are read. TODO python2_drop: is it still needed? The docstring mentions python 2.6 and it looks like this can be at least simplified ... Raises ValueError if not EOF is encountered before size bytes are read. Non-blocking objects only supported if they derive from io objects. Required as e.g. ZipExtFile in python 2.6 can return less data than requested. This function was taken from numpy/lib/format.py in version 1.10.2. Parameters ---------- fp: file-like object size: int error_template: str Returns ------- a bytes object The data read in bytes. """ data = bytes() while True: # io files (default in python3) return None or raise on # would-block, python2 file will truncate, probably nothing can be # done about that. note that regular files can't be non-blocking try: r = fp.read(size - len(data)) data += r if len(r) == 0 or len(data) == size: break except io.BlockingIOError: pass if len(data) != size: msg = "EOF: reading %s, expected %d bytes got %d" raise ValueError(msg % (error_template, size, len(data))) else: return data PKaZZZ���cJcJjoblib/parallel.py""" Helpers for embarrassingly parallel code. """ # Author: Gael Varoquaux < gael dot varoquaux at normalesup dot org > # Copyright: 2010, Gael Varoquaux # License: BSD 3 clause from __future__ import division import os import sys from math import sqrt import functools import collections import time import threading import itertools from uuid import uuid4 from numbers import Integral import warnings import queue import weakref from contextlib import nullcontext from multiprocessing import TimeoutError from ._multiprocessing_helpers import mp from .logger import Logger, short_format_time from .disk import memstr_to_bytes from ._parallel_backends import (FallbackToBackend, MultiprocessingBackend, ThreadingBackend, SequentialBackend, LokyBackend) from ._utils import eval_expr, _Sentinel # Make sure that those two classes are part of the public joblib.parallel API # so that 3rd party backend implementers can import them from here. from ._parallel_backends import AutoBatchingMixin # noqa from ._parallel_backends import ParallelBackendBase # noqa IS_PYPY = hasattr(sys, "pypy_version_info") BACKENDS = { 'threading': ThreadingBackend, 'sequential': SequentialBackend, } # name of the backend used by default by Parallel outside of any context # managed by ``parallel_config`` or ``parallel_backend``. # threading is the only backend that is always everywhere DEFAULT_BACKEND = 'threading' MAYBE_AVAILABLE_BACKENDS = {'multiprocessing', 'loky'} # if multiprocessing is available, so is loky, we set it as the default # backend if mp is not None: BACKENDS['multiprocessing'] = MultiprocessingBackend from .externals import loky BACKENDS['loky'] = LokyBackend DEFAULT_BACKEND = 'loky' DEFAULT_THREAD_BACKEND = 'threading' # Thread local value that can be overridden by the ``parallel_config`` context # manager _backend = threading.local() def _register_dask(): """Register Dask Backend if called with parallel_config(backend="dask")""" try: from ._dask import DaskDistributedBackend register_parallel_backend('dask', DaskDistributedBackend) except ImportError as e: msg = ("To use the dask.distributed backend you must install both " "the `dask` and distributed modules.\n\n" "See https://dask.pydata.org/en/latest/install.html for more " "information.") raise ImportError(msg) from e EXTERNAL_BACKENDS = { 'dask': _register_dask, } # Sentinels for the default values of the Parallel constructor and # the parallel_config and parallel_backend context managers default_parallel_config = { "backend": _Sentinel(default_value=None), "n_jobs": _Sentinel(default_value=None), "verbose": _Sentinel(default_value=0), "temp_folder": _Sentinel(default_value=None), "max_nbytes": _Sentinel(default_value="1M"), "mmap_mode": _Sentinel(default_value="r"), "prefer": _Sentinel(default_value=None), "require": _Sentinel(default_value=None), } VALID_BACKEND_HINTS = ('processes', 'threads', None) VALID_BACKEND_CONSTRAINTS = ('sharedmem', None) def _get_config_param(param, context_config, key): """Return the value of a parallel config parameter Explicitly setting it in Parallel has priority over setting in a parallel_(config/backend) context manager. """ if param is not default_parallel_config[key]: # param is explicitely set, return it return param if context_config[key] is not default_parallel_config[key]: # there's a context manager and the key is set, return it return context_config[key] # Otherwise, we are in the default_parallel_config, # return the default value return param.default_value def get_active_backend( prefer=default_parallel_config["prefer"], require=default_parallel_config["require"], verbose=default_parallel_config["verbose"], ): """Return the active default backend""" backend, config = _get_active_backend(prefer, require, verbose) n_jobs = _get_config_param( default_parallel_config['n_jobs'], config, "n_jobs" ) return backend, n_jobs def _get_active_backend( prefer=default_parallel_config["prefer"], require=default_parallel_config["require"], verbose=default_parallel_config["verbose"], ): """Return the active default backend""" backend_config = getattr(_backend, "config", default_parallel_config) backend = _get_config_param( default_parallel_config['backend'], backend_config, "backend" ) prefer = _get_config_param(prefer, backend_config, "prefer") require = _get_config_param(require, backend_config, "require") verbose = _get_config_param(verbose, backend_config, "verbose") if prefer not in VALID_BACKEND_HINTS: raise ValueError( f"prefer={prefer} is not a valid backend hint, " f"expected one of {VALID_BACKEND_HINTS}" ) if require not in VALID_BACKEND_CONSTRAINTS: raise ValueError( f"require={require} is not a valid backend constraint, " f"expected one of {VALID_BACKEND_CONSTRAINTS}" ) if prefer == 'processes' and require == 'sharedmem': raise ValueError( "prefer == 'processes' and require == 'sharedmem'" " are inconsistent settings" ) explicit_backend = True if backend is None: # We are either outside of the scope of any parallel_(config/backend) # context manager or the context manager did not set a backend. # create the default backend instance now. backend = BACKENDS[DEFAULT_BACKEND](nesting_level=0) explicit_backend = False # Try to use the backend set by the user with the context manager. nesting_level = backend.nesting_level uses_threads = getattr(backend, 'uses_threads', False) supports_sharedmem = getattr(backend, 'supports_sharedmem', False) # Force to use thread-based backend if the provided backend does not # match the shared memory constraint or if the backend is not explicitely # given and threads are prefered. force_threads = (require == 'sharedmem' and not supports_sharedmem) force_threads |= ( not explicit_backend and prefer == 'threads' and not uses_threads ) if force_threads: # This backend does not match the shared memory constraint: # fallback to the default thead-based backend. sharedmem_backend = BACKENDS[DEFAULT_THREAD_BACKEND]( nesting_level=nesting_level ) # Warn the user if we forced the backend to thread-based, while the # user explicitely specified a non-thread-based backend. if verbose >= 10 and explicit_backend: print( f"Using {sharedmem_backend.__class__.__name__} as " f"joblib backend instead of {backend.__class__.__name__} " "as the latter does not provide shared memory semantics." ) # Force to n_jobs=1 by default thread_config = backend_config.copy() thread_config['n_jobs'] = 1 return sharedmem_backend, thread_config return backend, backend_config class parallel_config: """Set the default backend or configuration for :class:`~joblib.Parallel`. This is an alternative to directly passing keyword arguments to the :class:`~joblib.Parallel` class constructor. It is particularly useful when calling into library code that uses joblib internally but does not expose the various parallel configuration arguments in its own API. Parameters ---------- backend: str or ParallelBackendBase instance, default=None If ``backend`` is a string it must match a previously registered implementation using the :func:`~register_parallel_backend` function. By default the following backends are available: - 'loky': single-host, process-based parallelism (used by default), - 'threading': single-host, thread-based parallelism, - 'multiprocessing': legacy single-host, process-based parallelism. 'loky' is recommended to run functions that manipulate Python objects. 'threading' is a low-overhead alternative that is most efficient for functions that release the Global Interpreter Lock: e.g. I/O-bound code or CPU-bound code in a few calls to native code that explicitly releases the GIL. Note that on some rare systems (such as pyodide), multiprocessing and loky may not be available, in which case joblib defaults to threading. In addition, if the ``dask`` and ``distributed`` Python packages are installed, it is possible to use the 'dask' backend for better scheduling of nested parallel calls without over-subscription and potentially distribute parallel calls over a networked cluster of several hosts. It is also possible to use the distributed 'ray' backend for distributing the workload to a cluster of nodes. See more details in the Examples section below. Alternatively the backend can be passed directly as an instance. n_jobs: int, default=None The maximum number of concurrently running jobs, such as the number of Python worker processes when ``backend="loky"`` or the size of the thread-pool when ``backend="threading"``. This argument is converted to an integer, rounded below for float. If -1 is given, `joblib` tries to use all CPUs. The number of CPUs ``n_cpus`` is obtained with :func:`~cpu_count`. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. For instance, using ``n_jobs=-2`` will result in all CPUs but one being used. This argument can also go above ``n_cpus``, which will cause oversubscription. In some cases, slight oversubscription can be beneficial, e.g., for tasks with large I/O operations. If 1 is given, no parallel computing code is used at all, and the behavior amounts to a simple python `for` loop. This mode is not compatible with `timeout`. None is a marker for 'unset' that will be interpreted as n_jobs=1 unless the call is performed under a :func:`~parallel_config` context manager that sets another value for ``n_jobs``. If n_jobs = 0 then a ValueError is raised. verbose: int, default=0 The verbosity level: if non zero, progress messages are printed. Above 50, the output is sent to stdout. The frequency of the messages increases with the verbosity level. If it more than 10, all iterations are reported. temp_folder: str or None, default=None Folder to be used by the pool for memmapping large arrays for sharing memory with worker processes. If None, this will try in order: - a folder pointed by the ``JOBLIB_TEMP_FOLDER`` environment variable, - ``/dev/shm`` if the folder exists and is writable: this is a RAM disk filesystem available by default on modern Linux distributions, - the default system temporary folder that can be overridden with ``TMP``, ``TMPDIR`` or ``TEMP`` environment variables, typically ``/tmp`` under Unix operating systems. max_nbytes int, str, or None, optional, default='1M' Threshold on the size of arrays passed to the workers that triggers automated memory mapping in temp_folder. Can be an int in Bytes, or a human-readable string, e.g., '1M' for 1 megabyte. Use None to disable memmapping of large arrays. mmap_mode: {None, 'r+', 'r', 'w+', 'c'}, default='r' Memmapping mode for numpy arrays passed to workers. None will disable memmapping, other modes defined in the numpy.memmap doc: https://numpy.org/doc/stable/reference/generated/numpy.memmap.html Also, see 'max_nbytes' parameter documentation for more details. prefer: str in {'processes', 'threads'} or None, default=None Soft hint to choose the default backend. The default process-based backend is 'loky' and the default thread-based backend is 'threading'. Ignored if the ``backend`` parameter is specified. require: 'sharedmem' or None, default=None Hard constraint to select the backend. If set to 'sharedmem', the selected backend will be single-host and thread-based. inner_max_num_threads: int, default=None If not None, overwrites the limit set on the number of threads usable in some third-party library threadpools like OpenBLAS, MKL or OpenMP. This is only used with the ``loky`` backend. backend_params: dict Additional parameters to pass to the backend constructor when backend is a string. Notes ----- Joblib tries to limit the oversubscription by limiting the number of threads usable in some third-party library threadpools like OpenBLAS, MKL or OpenMP. The default limit in each worker is set to ``max(cpu_count() // effective_n_jobs, 1)`` but this limit can be overwritten with the ``inner_max_num_threads`` argument which will be used to set this limit in the child processes. .. versionadded:: 1.3 Examples -------- >>> from operator import neg >>> with parallel_config(backend='threading'): ... print(Parallel()(delayed(neg)(i + 1) for i in range(5))) ... [-1, -2, -3, -4, -5] To use the 'ray' joblib backend add the following lines: >>> from ray.util.joblib import register_ray # doctest: +SKIP >>> register_ray() # doctest: +SKIP >>> with parallel_config(backend="ray"): # doctest: +SKIP ... print(Parallel()(delayed(neg)(i + 1) for i in range(5))) [-1, -2, -3, -4, -5] """ def __init__( self, backend=default_parallel_config["backend"], *, n_jobs=default_parallel_config["n_jobs"], verbose=default_parallel_config["verbose"], temp_folder=default_parallel_config["temp_folder"], max_nbytes=default_parallel_config["max_nbytes"], mmap_mode=default_parallel_config["mmap_mode"], prefer=default_parallel_config["prefer"], require=default_parallel_config["require"], inner_max_num_threads=None, **backend_params ): # Save the parallel info and set the active parallel config self.old_parallel_config = getattr( _backend, "config", default_parallel_config ) backend = self._check_backend( backend, inner_max_num_threads, **backend_params ) new_config = { "n_jobs": n_jobs, "verbose": verbose, "temp_folder": temp_folder, "max_nbytes": max_nbytes, "mmap_mode": mmap_mode, "prefer": prefer, "require": require, "backend": backend } self.parallel_config = self.old_parallel_config.copy() self.parallel_config.update({ k: v for k, v in new_config.items() if not isinstance(v, _Sentinel) }) setattr(_backend, "config", self.parallel_config) def _check_backend(self, backend, inner_max_num_threads, **backend_params): if backend is default_parallel_config['backend']: if inner_max_num_threads is not None or len(backend_params) > 0: raise ValueError( "inner_max_num_threads and other constructor " "parameters backend_params are only supported " "when backend is not None." ) return backend if isinstance(backend, str): # Handle non-registered or missing backends if backend not in BACKENDS: if backend in EXTERNAL_BACKENDS: register = EXTERNAL_BACKENDS[backend] register() elif backend in MAYBE_AVAILABLE_BACKENDS: warnings.warn( f"joblib backend '{backend}' is not available on " f"your system, falling back to {DEFAULT_BACKEND}.", UserWarning, stacklevel=2 ) BACKENDS[backend] = BACKENDS[DEFAULT_BACKEND] else: raise ValueError( f"Invalid backend: {backend}, expected one of " f"{sorted(BACKENDS.keys())}" ) backend = BACKENDS[backend](**backend_params) if inner_max_num_threads is not None: msg = ( f"{backend.__class__.__name__} does not accept setting the " "inner_max_num_threads argument." ) assert backend.supports_inner_max_num_threads, msg backend.inner_max_num_threads = inner_max_num_threads # If the nesting_level of the backend is not set previously, use the # nesting level from the previous active_backend to set it if backend.nesting_level is None: parent_backend = self.old_parallel_config['backend'] if parent_backend is default_parallel_config['backend']: nesting_level = 0 else: nesting_level = parent_backend.nesting_level backend.nesting_level = nesting_level return backend def __enter__(self): return self.parallel_config def __exit__(self, type, value, traceback): self.unregister() def unregister(self): setattr(_backend, "config", self.old_parallel_config) class parallel_backend(parallel_config): """Change the default backend used by Parallel inside a with block. .. warning:: It is advised to use the :class:`~joblib.parallel_config` context manager instead, which allows more fine-grained control over the backend configuration. If ``backend`` is a string it must match a previously registered implementation using the :func:`~register_parallel_backend` function. By default the following backends are available: - 'loky': single-host, process-based parallelism (used by default), - 'threading': single-host, thread-based parallelism, - 'multiprocessing': legacy single-host, process-based parallelism. 'loky' is recommended to run functions that manipulate Python objects. 'threading' is a low-overhead alternative that is most efficient for functions that release the Global Interpreter Lock: e.g. I/O-bound code or CPU-bound code in a few calls to native code that explicitly releases the GIL. Note that on some rare systems (such as Pyodide), multiprocessing and loky may not be available, in which case joblib defaults to threading. You can also use the `Dask <https://docs.dask.org/en/stable/>`_ joblib backend to distribute work across machines. This works well with scikit-learn estimators with the ``n_jobs`` parameter, for example:: >>> import joblib # doctest: +SKIP >>> from sklearn.model_selection import GridSearchCV # doctest: +SKIP >>> from dask.distributed import Client, LocalCluster # doctest: +SKIP >>> # create a local Dask cluster >>> cluster = LocalCluster() # doctest: +SKIP >>> client = Client(cluster) # doctest: +SKIP >>> grid_search = GridSearchCV(estimator, param_grid, n_jobs=-1) ... # doctest: +SKIP >>> with joblib.parallel_backend("dask", scatter=[X, y]): # doctest: +SKIP ... grid_search.fit(X, y) It is also possible to use the distributed 'ray' backend for distributing the workload to a cluster of nodes. To use the 'ray' joblib backend add the following lines:: >>> from ray.util.joblib import register_ray # doctest: +SKIP >>> register_ray() # doctest: +SKIP >>> with parallel_backend("ray"): # doctest: +SKIP ... print(Parallel()(delayed(neg)(i + 1) for i in range(5))) [-1, -2, -3, -4, -5] Alternatively the backend can be passed directly as an instance. By default all available workers will be used (``n_jobs=-1``) unless the caller passes an explicit value for the ``n_jobs`` parameter. This is an alternative to passing a ``backend='backend_name'`` argument to the :class:`~Parallel` class constructor. It is particularly useful when calling into library code that uses joblib internally but does not expose the backend argument in its own API. >>> from operator import neg >>> with parallel_backend('threading'): ... print(Parallel()(delayed(neg)(i + 1) for i in range(5))) ... [-1, -2, -3, -4, -5] Joblib also tries to limit the oversubscription by limiting the number of threads usable in some third-party library threadpools like OpenBLAS, MKL or OpenMP. The default limit in each worker is set to ``max(cpu_count() // effective_n_jobs, 1)`` but this limit can be overwritten with the ``inner_max_num_threads`` argument which will be used to set this limit in the child processes. .. versionadded:: 0.10 See Also -------- joblib.parallel_config: context manager to change the backend configuration. """ def __init__(self, backend, n_jobs=-1, inner_max_num_threads=None, **backend_params): super().__init__( backend=backend, n_jobs=n_jobs, inner_max_num_threads=inner_max_num_threads, **backend_params ) if self.old_parallel_config is None: self.old_backend_and_jobs = None else: self.old_backend_and_jobs = ( self.old_parallel_config["backend"], self.old_parallel_config["n_jobs"], ) self.new_backend_and_jobs = ( self.parallel_config["backend"], self.parallel_config["n_jobs"], ) def __enter__(self): return self.new_backend_and_jobs # Under Linux or OS X the default start method of multiprocessing # can cause third party libraries to crash. Under Python 3.4+ it is possible # to set an environment variable to switch the default start method from # 'fork' to 'forkserver' or 'spawn' to avoid this issue albeit at the cost # of causing semantic changes and some additional pool instantiation overhead. DEFAULT_MP_CONTEXT = None if hasattr(mp, 'get_context'): method = os.environ.get('JOBLIB_START_METHOD', '').strip() or None if method is not None: DEFAULT_MP_CONTEXT = mp.get_context(method=method) class BatchedCalls(object): """Wrap a sequence of (func, args, kwargs) tuples as a single callable""" def __init__(self, iterator_slice, backend_and_jobs, reducer_callback=None, pickle_cache=None): self.items = list(iterator_slice) self._size = len(self.items) self._reducer_callback = reducer_callback if isinstance(backend_and_jobs, tuple): self._backend, self._n_jobs = backend_and_jobs else: # this is for backward compatibility purposes. Before 0.12.6, # nested backends were returned without n_jobs indications. self._backend, self._n_jobs = backend_and_jobs, None self._pickle_cache = pickle_cache if pickle_cache is not None else {} def __call__(self): # Set the default nested backend to self._backend but do not set the # change the default number of processes to -1 with parallel_config(backend=self._backend, n_jobs=self._n_jobs): return [func(*args, **kwargs) for func, args, kwargs in self.items] def __reduce__(self): if self._reducer_callback is not None: self._reducer_callback() # no need to pickle the callback. return ( BatchedCalls, (self.items, (self._backend, self._n_jobs), None, self._pickle_cache) ) def __len__(self): return self._size # Possible exit status for a task TASK_DONE = "Done" TASK_ERROR = "Error" TASK_PENDING = "Pending" ############################################################################### # CPU count that works also when multiprocessing has been disabled via # the JOBLIB_MULTIPROCESSING environment variable def cpu_count(only_physical_cores=False): """Return the number of CPUs. This delegates to loky.cpu_count that takes into account additional constraints such as Linux CFS scheduler quotas (typically set by container runtimes such as docker) and CPU affinity (for instance using the taskset command on Linux). If only_physical_cores is True, do not take hyperthreading / SMT logical cores into account. """ if mp is None: return 1 return loky.cpu_count(only_physical_cores=only_physical_cores) ############################################################################### # For verbosity def _verbosity_filter(index, verbose): """ Returns False for indices increasingly apart, the distance depending on the value of verbose. We use a lag increasing as the square of index """ if not verbose: return True elif verbose > 10: return False if index == 0: return False verbose = .5 * (11 - verbose) ** 2 scale = sqrt(index / verbose) next_scale = sqrt((index + 1) / verbose) return (int(next_scale) == int(scale)) ############################################################################### def delayed(function): """Decorator used to capture the arguments of a function.""" def delayed_function(*args, **kwargs): return function, args, kwargs try: delayed_function = functools.wraps(function)(delayed_function) except AttributeError: " functools.wraps fails on some callable objects " return delayed_function ############################################################################### class BatchCompletionCallBack(object): """Callback to keep track of completed results and schedule the next tasks. This callable is executed by the parent process whenever a worker process has completed a batch of tasks. It is used for progress reporting, to update estimate of the batch processing duration and to schedule the next batch of tasks to be processed. It is assumed that this callback will always be triggered by the backend right after the end of a task, in case of success as well as in case of failure. """ ########################################################################## # METHODS CALLED BY THE MAIN THREAD # ########################################################################## def __init__(self, dispatch_timestamp, batch_size, parallel): self.dispatch_timestamp = dispatch_timestamp self.batch_size = batch_size self.parallel = parallel self.parallel_call_id = parallel._call_id # Internals to keep track of the status and outcome of the task. # Used to hold a reference to the future-like object returned by the # backend after launching this task # This will be set later when calling `register_job`, as it is only # created once the task has been submitted. self.job = None if not parallel._backend.supports_retrieve_callback: # The status is only used for asynchronous result retrieval in the # callback. self.status = None else: # The initial status for the job is TASK_PENDING. # Once it is done, it will be either TASK_DONE, or TASK_ERROR. self.status = TASK_PENDING def register_job(self, job): """Register the object returned by `apply_async`.""" self.job = job def get_result(self, timeout): """Returns the raw result of the task that was submitted. If the task raised an exception rather than returning, this same exception will be raised instead. If the backend supports the retrieval callback, it is assumed that this method is only called after the result has been registered. It is ensured by checking that `self.status(timeout)` does not return TASK_PENDING. In this case, `get_result` directly returns the registered result (or raise the registered exception). For other backends, there are no such assumptions, but `get_result` still needs to synchronously retrieve the result before it can return it or raise. It will block at most `self.timeout` seconds waiting for retrieval to complete, after that it raises a TimeoutError. """ backend = self.parallel._backend if backend.supports_retrieve_callback: # We assume that the result has already been retrieved by the # callback thread, and is stored internally. It's just waiting to # be returned. return self._return_or_raise() # For other backends, the main thread needs to run the retrieval step. try: if backend.supports_timeout: result = self.job.get(timeout=timeout) else: result = self.job.get() outcome = dict(result=result, status=TASK_DONE) except BaseException as e: outcome = dict(result=e, status=TASK_ERROR) self._register_outcome(outcome) return self._return_or_raise() def _return_or_raise(self): try: if self.status == TASK_ERROR: raise self._result return self._result finally: del self._result def get_status(self, timeout): """Get the status of the task. This function also checks if the timeout has been reached and register the TimeoutError outcome when it is the case. """ if timeout is None or self.status != TASK_PENDING: return self.status # The computation are running and the status is pending. # Check that we did not wait for this jobs more than `timeout`. now = time.time() if not hasattr(self, "_completion_timeout_counter"): self._completion_timeout_counter = now if (now - self._completion_timeout_counter) > timeout: outcome = dict(result=TimeoutError(), status=TASK_ERROR) self._register_outcome(outcome) return self.status ########################################################################## # METHODS CALLED BY CALLBACK THREADS # ########################################################################## def __call__(self, out): """Function called by the callback thread after a job is completed.""" # If the backend doesn't support callback retrievals, the next batch of # tasks is dispatched regardless. The result will be retrieved by the # main thread when calling `get_result`. if not self.parallel._backend.supports_retrieve_callback: self._dispatch_new() return # If the backend supports retrieving the result in the callback, it # registers the task outcome (TASK_ERROR or TASK_DONE), and schedules # the next batch if needed. with self.parallel._lock: # Edge case where while the task was processing, the `parallel` # instance has been reset and a new call has been issued, but the # worker managed to complete the task and trigger this callback # call just before being aborted by the reset. if self.parallel._call_id != self.parallel_call_id: return # When aborting, stop as fast as possible and do not retrieve the # result as it won't be returned by the Parallel call. if self.parallel._aborting: return # Retrieves the result of the task in the main process and dispatch # a new batch if needed. job_succeeded = self._retrieve_result(out) if not self.parallel.return_ordered: # Append the job to the queue in the order of completion # instead of submission. self.parallel._jobs.append(self) if job_succeeded: self._dispatch_new() def _dispatch_new(self): """Schedule the next batch of tasks to be processed.""" # This steps ensure that auto-batching works as expected. this_batch_duration = time.time() - self.dispatch_timestamp self.parallel._backend.batch_completed(self.batch_size, this_batch_duration) # Schedule the next batch of tasks. with self.parallel._lock: self.parallel.n_completed_tasks += self.batch_size self.parallel.print_progress() if self.parallel._original_iterator is not None: self.parallel.dispatch_next() def _retrieve_result(self, out): """Fetch and register the outcome of a task. Return True if the task succeeded, False otherwise. This function is only called by backends that support retrieving the task result in the callback thread. """ try: result = self.parallel._backend.retrieve_result_callback(out) outcome = dict(status=TASK_DONE, result=result) except BaseException as e: # Avoid keeping references to parallel in the error. e.__traceback__ = None outcome = dict(result=e, status=TASK_ERROR) self._register_outcome(outcome) return outcome['status'] != TASK_ERROR ########################################################################## # This method can be called either in the main thread # # or in the callback thread. # ########################################################################## def _register_outcome(self, outcome): """Register the outcome of a task. This method can be called only once, future calls will be ignored. """ # Covers the edge case where the main thread tries to register a # `TimeoutError` while the callback thread tries to register a result # at the same time. with self.parallel._lock: if self.status not in (TASK_PENDING, None): return self.status = outcome["status"] self._result = outcome["result"] # Once the result and the status are extracted, the last reference to # the job can be deleted. self.job = None # As soon as an error as been spotted, early stopping flags are sent to # the `parallel` instance. if self.status == TASK_ERROR: self.parallel._exception = True self.parallel._aborting = True ############################################################################### def register_parallel_backend(name, factory, make_default=False): """Register a new Parallel backend factory. The new backend can then be selected by passing its name as the backend argument to the :class:`~Parallel` class. Moreover, the default backend can be overwritten globally by setting make_default=True. The factory can be any callable that takes no argument and return an instance of ``ParallelBackendBase``. Warning: this function is experimental and subject to change in a future version of joblib. .. versionadded:: 0.10 """ BACKENDS[name] = factory if make_default: global DEFAULT_BACKEND DEFAULT_BACKEND = name def effective_n_jobs(n_jobs=-1): """Determine the number of jobs that can actually run in parallel n_jobs is the number of workers requested by the callers. Passing n_jobs=-1 means requesting all available workers for instance matching the number of CPU cores on the worker host(s). This method should return a guesstimate of the number of workers that can actually perform work concurrently with the currently enabled default backend. The primary use case is to make it possible for the caller to know in how many chunks to slice the work. In general working on larger data chunks is more efficient (less scheduling overhead and better use of CPU cache prefetching heuristics) as long as all the workers have enough work to do. Warning: this function is experimental and subject to change in a future version of joblib. .. versionadded:: 0.10 """ if n_jobs == 1: return 1 backend, backend_n_jobs = get_active_backend() if n_jobs is None: n_jobs = backend_n_jobs return backend.effective_n_jobs(n_jobs=n_jobs) ############################################################################### class Parallel(Logger): ''' Helper class for readable parallel mapping. Read more in the :ref:`User Guide <parallel>`. Parameters ---------- n_jobs: int, default=None The maximum number of concurrently running jobs, such as the number of Python worker processes when ``backend="loky"`` or the size of the thread-pool when ``backend="threading"``. This argument is converted to an integer, rounded below for float. If -1 is given, `joblib` tries to use all CPUs. The number of CPUs ``n_cpus`` is obtained with :func:`~cpu_count`. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. For instance, using ``n_jobs=-2`` will result in all CPUs but one being used. This argument can also go above ``n_cpus``, which will cause oversubscription. In some cases, slight oversubscription can be beneficial, e.g., for tasks with large I/O operations. If 1 is given, no parallel computing code is used at all, and the behavior amounts to a simple python `for` loop. This mode is not compatible with ``timeout``. None is a marker for 'unset' that will be interpreted as n_jobs=1 unless the call is performed under a :func:`~parallel_config` context manager that sets another value for ``n_jobs``. If n_jobs = 0 then a ValueError is raised. backend: str, ParallelBackendBase instance or None, default='loky' Specify the parallelization backend implementation. Supported backends are: - "loky" used by default, can induce some communication and memory overhead when exchanging input and output data with the worker Python processes. On some rare systems (such as Pyiodide), the loky backend may not be available. - "multiprocessing" previous process-based backend based on `multiprocessing.Pool`. Less robust than `loky`. - "threading" is a very low-overhead backend but it suffers from the Python Global Interpreter Lock if the called function relies a lot on Python objects. "threading" is mostly useful when the execution bottleneck is a compiled extension that explicitly releases the GIL (for instance a Cython loop wrapped in a "with nogil" block or an expensive call to a library such as NumPy). - finally, you can register backends by calling :func:`~register_parallel_backend`. This will allow you to implement a backend of your liking. It is not recommended to hard-code the backend name in a call to :class:`~Parallel` in a library. Instead it is recommended to set soft hints (prefer) or hard constraints (require) so as to make it possible for library users to change the backend from the outside using the :func:`~parallel_config` context manager. return_as: str in {'list', 'generator', 'generator_unordered'}, default='list' If 'list', calls to this instance will return a list, only when all results have been processed and retrieved. If 'generator', it will return a generator that yields the results as soon as they are available, in the order the tasks have been submitted with. If 'generator_unordered', the generator will immediately yield available results independently of the submission order. The output order is not deterministic in this case because it depends on the concurrency of the workers. prefer: str in {'processes', 'threads'} or None, default=None Soft hint to choose the default backend if no specific backend was selected with the :func:`~parallel_config` context manager. The default process-based backend is 'loky' and the default thread-based backend is 'threading'. Ignored if the ``backend`` parameter is specified. require: 'sharedmem' or None, default=None Hard constraint to select the backend. If set to 'sharedmem', the selected backend will be single-host and thread-based even if the user asked for a non-thread based backend with :func:`~joblib.parallel_config`. verbose: int, default=0 The verbosity level: if non zero, progress messages are printed. Above 50, the output is sent to stdout. The frequency of the messages increases with the verbosity level. If it more than 10, all iterations are reported. timeout: float or None, default=None Timeout limit for each task to complete. If any task takes longer a TimeOutError will be raised. Only applied when n_jobs != 1 pre_dispatch: {'all', integer, or expression, as in '3*n_jobs'}, default='2*n_jobs' The number of batches (of tasks) to be pre-dispatched. Default is '2*n_jobs'. When batch_size="auto" this is reasonable default and the workers should never starve. Note that only basic arithmetics are allowed here and no modules can be used in this expression. batch_size: int or 'auto', default='auto' The number of atomic tasks to dispatch at once to each worker. When individual evaluations are very fast, dispatching calls to workers can be slower than sequential computation because of the overhead. Batching fast computations together can mitigate this. The ``'auto'`` strategy keeps track of the time it takes for a batch to complete, and dynamically adjusts the batch size to keep the time on the order of half a second, using a heuristic. The initial batch size is 1. ``batch_size="auto"`` with ``backend="threading"`` will dispatch batches of a single task at a time as the threading backend has very little overhead and using larger batch size has not proved to bring any gain in that case. temp_folder: str or None, default=None Folder to be used by the pool for memmapping large arrays for sharing memory with worker processes. If None, this will try in order: - a folder pointed by the JOBLIB_TEMP_FOLDER environment variable, - /dev/shm if the folder exists and is writable: this is a RAM disk filesystem available by default on modern Linux distributions, - the default system temporary folder that can be overridden with TMP, TMPDIR or TEMP environment variables, typically /tmp under Unix operating systems. Only active when ``backend="loky"`` or ``"multiprocessing"``. max_nbytes int, str, or None, optional, default='1M' Threshold on the size of arrays passed to the workers that triggers automated memory mapping in temp_folder. Can be an int in Bytes, or a human-readable string, e.g., '1M' for 1 megabyte. Use None to disable memmapping of large arrays. Only active when ``backend="loky"`` or ``"multiprocessing"``. mmap_mode: {None, 'r+', 'r', 'w+', 'c'}, default='r' Memmapping mode for numpy arrays passed to workers. None will disable memmapping, other modes defined in the numpy.memmap doc: https://numpy.org/doc/stable/reference/generated/numpy.memmap.html Also, see 'max_nbytes' parameter documentation for more details. Notes ----- This object uses workers to compute in parallel the application of a function to many different arguments. The main functionality it brings in addition to using the raw multiprocessing or concurrent.futures API are (see examples for details): * More readable code, in particular since it avoids constructing list of arguments. * Easier debugging: - informative tracebacks even when the error happens on the client side - using 'n_jobs=1' enables to turn off parallel computing for debugging without changing the codepath - early capture of pickling errors * An optional progress meter. * Interruption of multiprocesses jobs with 'Ctrl-C' * Flexible pickling control for the communication to and from the worker processes. * Ability to use shared memory efficiently with worker processes for large numpy-based datastructures. Note that the intended usage is to run one call at a time. Multiple calls to the same Parallel object will result in a ``RuntimeError`` Examples -------- A simple example: >>> from math import sqrt >>> from joblib import Parallel, delayed >>> Parallel(n_jobs=1)(delayed(sqrt)(i**2) for i in range(10)) [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0] Reshaping the output when the function has several return values: >>> from math import modf >>> from joblib import Parallel, delayed >>> r = Parallel(n_jobs=1)(delayed(modf)(i/2.) for i in range(10)) >>> res, i = zip(*r) >>> res (0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5) >>> i (0.0, 0.0, 1.0, 1.0, 2.0, 2.0, 3.0, 3.0, 4.0, 4.0) The progress meter: the higher the value of `verbose`, the more messages: >>> from time import sleep >>> from joblib import Parallel, delayed >>> r = Parallel(n_jobs=2, verbose=10)( ... delayed(sleep)(.2) for _ in range(10)) #doctest: +SKIP [Parallel(n_jobs=2)]: Done 1 tasks | elapsed: 0.6s [Parallel(n_jobs=2)]: Done 4 tasks | elapsed: 0.8s [Parallel(n_jobs=2)]: Done 10 out of 10 | elapsed: 1.4s finished Traceback example, note how the line of the error is indicated as well as the values of the parameter passed to the function that triggered the exception, even though the traceback happens in the child process: >>> from heapq import nlargest >>> from joblib import Parallel, delayed >>> Parallel(n_jobs=2)( ... delayed(nlargest)(2, n) for n in (range(4), 'abcde', 3)) ... # doctest: +SKIP ----------------------------------------------------------------------- Sub-process traceback: ----------------------------------------------------------------------- TypeError Mon Nov 12 11:37:46 2012 PID: 12934 Python 2.7.3: /usr/bin/python ........................................................................ /usr/lib/python2.7/heapq.pyc in nlargest(n=2, iterable=3, key=None) 419 if n >= size: 420 return sorted(iterable, key=key, reverse=True)[:n] 421 422 # When key is none, use simpler decoration 423 if key is None: --> 424 it = izip(iterable, count(0,-1)) # decorate 425 result = _nlargest(n, it) 426 return map(itemgetter(0), result) # undecorate 427 428 # General case, slowest method TypeError: izip argument #1 must support iteration _______________________________________________________________________ Using pre_dispatch in a producer/consumer situation, where the data is generated on the fly. Note how the producer is first called 3 times before the parallel loop is initiated, and then called to generate new data on the fly: >>> from math import sqrt >>> from joblib import Parallel, delayed >>> def producer(): ... for i in range(6): ... print('Produced %s' % i) ... yield i >>> out = Parallel(n_jobs=2, verbose=100, pre_dispatch='1.5*n_jobs')( ... delayed(sqrt)(i) for i in producer()) #doctest: +SKIP Produced 0 Produced 1 Produced 2 [Parallel(n_jobs=2)]: Done 1 jobs | elapsed: 0.0s Produced 3 [Parallel(n_jobs=2)]: Done 2 jobs | elapsed: 0.0s Produced 4 [Parallel(n_jobs=2)]: Done 3 jobs | elapsed: 0.0s Produced 5 [Parallel(n_jobs=2)]: Done 4 jobs | elapsed: 0.0s [Parallel(n_jobs=2)]: Done 6 out of 6 | elapsed: 0.0s remaining: 0.0s [Parallel(n_jobs=2)]: Done 6 out of 6 | elapsed: 0.0s finished ''' # noqa: E501 def __init__( self, n_jobs=default_parallel_config["n_jobs"], backend=default_parallel_config['backend'], return_as="list", verbose=default_parallel_config["verbose"], timeout=None, pre_dispatch='2 * n_jobs', batch_size='auto', temp_folder=default_parallel_config["temp_folder"], max_nbytes=default_parallel_config["max_nbytes"], mmap_mode=default_parallel_config["mmap_mode"], prefer=default_parallel_config["prefer"], require=default_parallel_config["require"], ): # Initiate parent Logger class state super().__init__() # Interpret n_jobs=None as 'unset' if n_jobs is None: n_jobs = default_parallel_config["n_jobs"] active_backend, context_config = _get_active_backend( prefer=prefer, require=require, verbose=verbose ) nesting_level = active_backend.nesting_level self.verbose = _get_config_param(verbose, context_config, "verbose") self.timeout = timeout self.pre_dispatch = pre_dispatch if return_as not in {"list", "generator", "generator_unordered"}: raise ValueError( 'Expected `return_as` parameter to be a string equal to "list"' f',"generator" or "generator_unordered", but got {return_as} ' "instead." ) self.return_as = return_as self.return_generator = return_as != "list" self.return_ordered = return_as != "generator_unordered" # Check if we are under a parallel_config or parallel_backend # context manager and use the config from the context manager # for arguments that are not explicitly set. self._backend_args = { k: _get_config_param(param, context_config, k) for param, k in [ (max_nbytes, "max_nbytes"), (temp_folder, "temp_folder"), (mmap_mode, "mmap_mode"), (prefer, "prefer"), (require, "require"), (verbose, "verbose"), ] } if isinstance(self._backend_args["max_nbytes"], str): self._backend_args["max_nbytes"] = memstr_to_bytes( self._backend_args["max_nbytes"] ) self._backend_args["verbose"] = max( 0, self._backend_args["verbose"] - 50 ) if DEFAULT_MP_CONTEXT is not None: self._backend_args['context'] = DEFAULT_MP_CONTEXT elif hasattr(mp, "get_context"): self._backend_args['context'] = mp.get_context() if backend is default_parallel_config['backend'] or backend is None: backend = active_backend elif isinstance(backend, ParallelBackendBase): # Use provided backend as is, with the current nesting_level if it # is not set yet. if backend.nesting_level is None: backend.nesting_level = nesting_level elif hasattr(backend, 'Pool') and hasattr(backend, 'Lock'): # Make it possible to pass a custom multiprocessing context as # backend to change the start method to forkserver or spawn or # preload modules on the forkserver helper process. self._backend_args['context'] = backend backend = MultiprocessingBackend(nesting_level=nesting_level) elif backend not in BACKENDS and backend in MAYBE_AVAILABLE_BACKENDS: warnings.warn( f"joblib backend '{backend}' is not available on " f"your system, falling back to {DEFAULT_BACKEND}.", UserWarning, stacklevel=2) BACKENDS[backend] = BACKENDS[DEFAULT_BACKEND] backend = BACKENDS[DEFAULT_BACKEND](nesting_level=nesting_level) else: try: backend_factory = BACKENDS[backend] except KeyError as e: raise ValueError("Invalid backend: %s, expected one of %r" % (backend, sorted(BACKENDS.keys()))) from e backend = backend_factory(nesting_level=nesting_level) n_jobs = _get_config_param(n_jobs, context_config, "n_jobs") if n_jobs is None: # No specific context override and no specific value request: # default to the default of the backend. n_jobs = backend.default_n_jobs try: n_jobs = int(n_jobs) except ValueError: raise ValueError("n_jobs could not be converted to int") self.n_jobs = n_jobs if (require == 'sharedmem' and not getattr(backend, 'supports_sharedmem', False)): raise ValueError("Backend %s does not support shared memory" % backend) if (batch_size == 'auto' or isinstance(batch_size, Integral) and batch_size > 0): self.batch_size = batch_size else: raise ValueError( "batch_size must be 'auto' or a positive integer, got: %r" % batch_size) if not isinstance(backend, SequentialBackend): if self.return_generator and not backend.supports_return_generator: raise ValueError( "Backend {} does not support " "return_as={}".format(backend, return_as) ) # This lock is used to coordinate the main thread of this process # with the async callback thread of our the pool. self._lock = threading.RLock() self._jobs = collections.deque() self._pending_outputs = list() self._ready_batches = queue.Queue() self._reducer_callback = None # Internal variables self._backend = backend self._running = False self._managed_backend = False self._id = uuid4().hex self._call_ref = None def __enter__(self): self._managed_backend = True self._calling = False self._initialize_backend() return self def __exit__(self, exc_type, exc_value, traceback): self._managed_backend = False if self.return_generator and self._calling: self._abort() self._terminate_and_reset() def _initialize_backend(self): """Build a process or thread pool and return the number of workers""" try: n_jobs = self._backend.configure(n_jobs=self.n_jobs, parallel=self, **self._backend_args) if self.timeout is not None and not self._backend.supports_timeout: warnings.warn( 'The backend class {!r} does not support timeout. ' "You have set 'timeout={}' in Parallel but " "the 'timeout' parameter will not be used.".format( self._backend.__class__.__name__, self.timeout)) except FallbackToBackend as e: # Recursively initialize the backend in case of requested fallback. self._backend = e.backend n_jobs = self._initialize_backend() return n_jobs def _effective_n_jobs(self): if self._backend: return self._backend.effective_n_jobs(self.n_jobs) return 1 def _terminate_and_reset(self): if hasattr(self._backend, 'stop_call') and self._calling: self._backend.stop_call() self._calling = False if not self._managed_backend: self._backend.terminate() def _dispatch(self, batch): """Queue the batch for computing, with or without multiprocessing WARNING: this method is not thread-safe: it should be only called indirectly via dispatch_one_batch. """ # If job.get() catches an exception, it closes the queue: if self._aborting: return batch_size = len(batch) self.n_dispatched_tasks += batch_size self.n_dispatched_batches += 1 dispatch_timestamp = time.time() batch_tracker = BatchCompletionCallBack( dispatch_timestamp, batch_size, self ) if self.return_ordered: self._jobs.append(batch_tracker) # If return_ordered is False, the batch_tracker is not stored in the # jobs queue at the time of submission. Instead, it will be appended to # the queue by itself as soon as the callback is triggered to be able # to return the results in the order of completion. job = self._backend.apply_async(batch, callback=batch_tracker) batch_tracker.register_job(job) def dispatch_next(self): """Dispatch more data for parallel processing This method is meant to be called concurrently by the multiprocessing callback. We rely on the thread-safety of dispatch_one_batch to protect against concurrent consumption of the unprotected iterator. """ if not self.dispatch_one_batch(self._original_iterator): self._iterating = False self._original_iterator = None def dispatch_one_batch(self, iterator): """Prefetch the tasks for the next batch and dispatch them. The effective size of the batch is computed here. If there are no more jobs to dispatch, return False, else return True. The iterator consumption and dispatching is protected by the same lock so calling this function should be thread safe. """ if self._aborting: return False batch_size = self._get_batch_size() with self._lock: # to ensure an even distribution of the workload between workers, # we look ahead in the original iterators more than batch_size # tasks - However, we keep consuming only one batch at each # dispatch_one_batch call. The extra tasks are stored in a local # queue, _ready_batches, that is looked-up prior to re-consuming # tasks from the origal iterator. try: tasks = self._ready_batches.get(block=False) except queue.Empty: # slice the iterator n_jobs * batchsize items at a time. If the # slice returns less than that, then the current batchsize puts # too much weight on a subset of workers, while other may end # up starving. So in this case, re-scale the batch size # accordingly to distribute evenly the last items between all # workers. n_jobs = self._cached_effective_n_jobs big_batch_size = batch_size * n_jobs try: islice = list(itertools.islice(iterator, big_batch_size)) except Exception as e: # Handle the fact that the generator of task raised an # exception. As this part of the code can be executed in # a thread internal to the backend, register a task with # an error that will be raised in the user's thread. if isinstance(e.__context__, queue.Empty): # Supress the cause of the exception if it is # queue.Empty to avoid cluttered traceback. Only do it # if the __context__ is really empty to avoid messing # with causes of the original error. e.__cause__ = None batch_tracker = BatchCompletionCallBack( 0, batch_size, self ) self._jobs.append(batch_tracker) batch_tracker._register_outcome(dict( result=e, status=TASK_ERROR )) return True if len(islice) == 0: return False elif (iterator is self._original_iterator and len(islice) < big_batch_size): # We reached the end of the original iterator (unless # iterator is the ``pre_dispatch``-long initial slice of # the original iterator) -- decrease the batch size to # account for potential variance in the batches running # time. final_batch_size = max(1, len(islice) // (10 * n_jobs)) else: final_batch_size = max(1, len(islice) // n_jobs) # enqueue n_jobs batches in a local queue for i in range(0, len(islice), final_batch_size): tasks = BatchedCalls(islice[i:i + final_batch_size], self._backend.get_nested_backend(), self._reducer_callback, self._pickle_cache) self._ready_batches.put(tasks) # finally, get one task. tasks = self._ready_batches.get(block=False) if len(tasks) == 0: # No more tasks available in the iterator: tell caller to stop. return False else: self._dispatch(tasks) return True def _get_batch_size(self): """Returns the effective batch size for dispatch""" if self.batch_size == 'auto': return self._backend.compute_batch_size() else: # Fixed batch size strategy return self.batch_size def _print(self, msg): """Display the message on stout or stderr depending on verbosity""" # XXX: Not using the logger framework: need to # learn to use logger better. if not self.verbose: return if self.verbose < 50: writer = sys.stderr.write else: writer = sys.stdout.write writer(f"[{self}]: {msg}\n") def _is_completed(self): """Check if all tasks have been completed""" return self.n_completed_tasks == self.n_dispatched_tasks and not ( self._iterating or self._aborting ) def print_progress(self): """Display the process of the parallel execution only a fraction of time, controlled by self.verbose. """ if not self.verbose: return elapsed_time = time.time() - self._start_time if self._is_completed(): # Make sure that we get a last message telling us we are done self._print( f"Done {self.n_completed_tasks:3d} out of " f"{self.n_completed_tasks:3d} | elapsed: " f"{short_format_time(elapsed_time)} finished" ) return # Original job iterator becomes None once it has been fully # consumed: at this point we know the total number of jobs and we are # able to display an estimation of the remaining time based on already # completed jobs. Otherwise, we simply display the number of completed # tasks. elif self._original_iterator is not None: if _verbosity_filter(self.n_dispatched_batches, self.verbose): return self._print( f"Done {self.n_completed_tasks:3d} tasks | elapsed: " f"{short_format_time(elapsed_time)}" ) else: index = self.n_completed_tasks # We are finished dispatching total_tasks = self.n_dispatched_tasks # We always display the first loop if not index == 0: # Display depending on the number of remaining items # A message as soon as we finish dispatching, cursor is 0 cursor = (total_tasks - index + 1 - self._pre_dispatch_amount) frequency = (total_tasks // self.verbose) + 1 is_last_item = (index + 1 == total_tasks) if (is_last_item or cursor % frequency): return remaining_time = (elapsed_time / index) * \ (self.n_dispatched_tasks - index * 1.0) # only display status if remaining time is greater or equal to 0 self._print( f"Done {index:3d} out of {total_tasks:3d} | elapsed: " f"{short_format_time(elapsed_time)} remaining: " f"{short_format_time(remaining_time)}" ) def _abort(self): # Stop dispatching new jobs in the async callback thread self._aborting = True # If the backend allows it, cancel or kill remaining running # tasks without waiting for the results as we will raise # the exception we got back to the caller instead of returning # any result. backend = self._backend if (not self._aborted and hasattr(backend, 'abort_everything')): # If the backend is managed externally we need to make sure # to leave it in a working state to allow for future jobs # scheduling. ensure_ready = self._managed_backend backend.abort_everything(ensure_ready=ensure_ready) self._aborted = True def _start(self, iterator, pre_dispatch): # Only set self._iterating to True if at least a batch # was dispatched. In particular this covers the edge # case of Parallel used with an exhausted iterator. If # self._original_iterator is None, then this means either # that pre_dispatch == "all", n_jobs == 1 or that the first batch # was very quick and its callback already dispatched all the # remaining jobs. self._iterating = False if self.dispatch_one_batch(iterator): self._iterating = self._original_iterator is not None while self.dispatch_one_batch(iterator): pass if pre_dispatch == "all": # The iterable was consumed all at once by the above for loop. # No need to wait for async callbacks to trigger to # consumption. self._iterating = False def _get_outputs(self, iterator, pre_dispatch): """Iterator returning the tasks' output as soon as they are ready.""" dispatch_thread_id = threading.get_ident() detach_generator_exit = False try: self._start(iterator, pre_dispatch) # first yield returns None, for internal use only. This ensures # that we enter the try/except block and start dispatching the # tasks. yield with self._backend.retrieval_context(): yield from self._retrieve() except GeneratorExit: # The generator has been garbage collected before being fully # consumed. This aborts the remaining tasks if possible and warn # the user if necessary. self._exception = True # In some interpreters such as PyPy, GeneratorExit can be raised in # a different thread than the one used to start the dispatch of the # parallel tasks. This can lead to hang when a thread attempts to # join itself. As workaround, we detach the execution of the # aborting code to a dedicated thread. We then need to make sure # the rest of the function does not call `_terminate_and_reset` # in finally. if dispatch_thread_id != threading.get_ident(): if not IS_PYPY: warnings.warn( "A generator produced by joblib.Parallel has been " "gc'ed in an unexpected thread. This behavior should " "not cause major -issues but to make sure, please " "report this warning and your use case at " "https://github.com/joblib/joblib/issues so it can " "be investigated." ) detach_generator_exit = True _parallel = self class _GeneratorExitThread(threading.Thread): def run(self): _parallel._abort() if _parallel.return_generator: _parallel._warn_exit_early() _parallel._terminate_and_reset() _GeneratorExitThread( name="GeneratorExitThread" ).start() return # Otherwise, we are in the thread that started the dispatch: we can # safely abort the execution and warn the user. self._abort() if self.return_generator: self._warn_exit_early() raise # Note: we catch any BaseException instead of just Exception instances # to also include KeyboardInterrupt except BaseException: self._exception = True self._abort() raise finally: # Store the unconsumed tasks and terminate the workers if necessary _remaining_outputs = ([] if self._exception else self._jobs) self._jobs = collections.deque() self._running = False if not detach_generator_exit: self._terminate_and_reset() while len(_remaining_outputs) > 0: batched_results = _remaining_outputs.popleft() batched_results = batched_results.get_result(self.timeout) for result in batched_results: yield result def _wait_retrieval(self): """Return True if we need to continue retriving some tasks.""" # If the input load is still being iterated over, it means that tasks # are still on the dispatch wait list and their results will need to # be retrieved later on. if self._iterating: return True # If some of the dispatched tasks are still being processed by the # workers, wait for the compute to finish before starting retrieval if self.n_completed_tasks < self.n_dispatched_tasks: return True # For backends that does not support retrieving asynchronously the # result to the main process, all results must be carefully retrieved # in the _retrieve loop in the main thread while the backend is alive. # For other backends, the actual retrieval is done asynchronously in # the callback thread, and we can terminate the backend before the # `self._jobs` result list has been emptied. The remaining results # will be collected in the `finally` step of the generator. if not self._backend.supports_retrieve_callback: if len(self._jobs) > 0: return True return False def _retrieve(self): while self._wait_retrieval(): # If the callback thread of a worker has signaled that its task # triggered an exception, or if the retrieval loop has raised an # exception (e.g. `GeneratorExit`), exit the loop and surface the # worker traceback. if self._aborting: self._raise_error_fast() break # If the next job is not ready for retrieval yet, we just wait for # async callbacks to progress. if ((len(self._jobs) == 0) or (self._jobs[0].get_status( timeout=self.timeout) == TASK_PENDING)): time.sleep(0.01) continue # We need to be careful: the job list can be filling up as # we empty it and Python list are not thread-safe by # default hence the use of the lock with self._lock: batched_results = self._jobs.popleft() # Flatten the batched results to output one output at a time batched_results = batched_results.get_result(self.timeout) for result in batched_results: self._nb_consumed += 1 yield result def _raise_error_fast(self): """If we are aborting, raise if a job caused an error.""" # Find the first job whose status is TASK_ERROR if it exists. with self._lock: error_job = next((job for job in self._jobs if job.status == TASK_ERROR), None) # If this error job exists, immediatly raise the error by # calling get_result. This job might not exists if abort has been # called directly or if the generator is gc'ed. if error_job is not None: error_job.get_result(self.timeout) def _warn_exit_early(self): """Warn the user if the generator is gc'ed before being consumned.""" ready_outputs = self.n_completed_tasks - self._nb_consumed is_completed = self._is_completed() msg = "" if ready_outputs: msg += ( f"{ready_outputs} tasks have been successfully executed " " but not used." ) if not is_completed: msg += " Additionally, " if not is_completed: msg += ( f"{self.n_dispatched_tasks - self.n_completed_tasks} tasks " "which were still being processed by the workers have been " "cancelled." ) if msg: msg += ( " You could benefit from adjusting the input task " "iterator to limit unnecessary computation time." ) warnings.warn(msg) def _get_sequential_output(self, iterable): """Separate loop for sequential output. This simplifies the traceback in case of errors and reduces the overhead of calling sequential tasks with `joblib`. """ try: self._iterating = True self._original_iterator = iterable batch_size = self._get_batch_size() if batch_size != 1: it = iter(iterable) iterable_batched = iter( lambda: tuple(itertools.islice(it, batch_size)), () ) iterable = ( task for batch in iterable_batched for task in batch ) # first yield returns None, for internal use only. This ensures # that we enter the try/except block and setup the generator. yield None # Sequentially call the tasks and yield the results. for func, args, kwargs in iterable: self.n_dispatched_batches += 1 self.n_dispatched_tasks += 1 res = func(*args, **kwargs) self.n_completed_tasks += 1 self.print_progress() yield res self._nb_consumed += 1 except BaseException: self._exception = True self._aborting = True self._aborted = True raise finally: self.print_progress() self._running = False self._iterating = False self._original_iterator = None def _reset_run_tracking(self): """Reset the counters and flags used to track the execution.""" # Makes sur the parallel instance was not previously running in a # thread-safe way. with getattr(self, '_lock', nullcontext()): if self._running: msg = 'This Parallel instance is already running !' if self.return_generator is True: msg += ( " Before submitting new tasks, you must wait for the " "completion of all the previous tasks, or clean all " "references to the output generator." ) raise RuntimeError(msg) self._running = True # Counter to keep track of the task dispatched and completed. self.n_dispatched_batches = 0 self.n_dispatched_tasks = 0 self.n_completed_tasks = 0 # Following count is incremented by one each time the user iterates # on the output generator, it is used to prepare an informative # warning message in case the generator is deleted before all the # dispatched tasks have been consumed. self._nb_consumed = 0 # Following flags are used to synchronize the threads in case one of # the tasks error-out to ensure that all workers abort fast and that # the backend terminates properly. # Set to True as soon as a worker signals that a task errors-out self._exception = False # Set to True in case of early termination following an incident self._aborting = False # Set to True after abortion is complete self._aborted = False def __call__(self, iterable): """Main function to dispatch parallel tasks.""" self._reset_run_tracking() self._start_time = time.time() if not self._managed_backend: n_jobs = self._initialize_backend() else: n_jobs = self._effective_n_jobs() if n_jobs == 1: # If n_jobs==1, run the computation sequentially and return # immediatly to avoid overheads. output = self._get_sequential_output(iterable) next(output) return output if self.return_generator else list(output) # Let's create an ID that uniquely identifies the current call. If the # call is interrupted early and that the same instance is immediately # re-used, this id will be used to prevent workers that were # concurrently finalizing a task from the previous call to run the # callback. with self._lock: self._call_id = uuid4().hex # self._effective_n_jobs should be called in the Parallel.__call__ # thread only -- store its value in an attribute for further queries. self._cached_effective_n_jobs = n_jobs if isinstance(self._backend, LokyBackend): # For the loky backend, we add a callback executed when reducing # BatchCalls, that makes the loky executor use a temporary folder # specific to this Parallel object when pickling temporary memmaps. # This callback is necessary to ensure that several Parallel # objects using the same resuable executor don't use the same # temporary resources. def _batched_calls_reducer_callback(): # Relevant implementation detail: the following lines, called # when reducing BatchedCalls, are called in a thread-safe # situation, meaning that the context of the temporary folder # manager will not be changed in between the callback execution # and the end of the BatchedCalls pickling. The reason is that # pickling (the only place where set_current_context is used) # is done from a single thread (the queue_feeder_thread). self._backend._workers._temp_folder_manager.set_current_context( # noqa self._id ) self._reducer_callback = _batched_calls_reducer_callback # self._effective_n_jobs should be called in the Parallel.__call__ # thread only -- store its value in an attribute for further queries. self._cached_effective_n_jobs = n_jobs backend_name = self._backend.__class__.__name__ if n_jobs == 0: raise RuntimeError("%s has no active worker." % backend_name) self._print( f"Using backend {backend_name} with {n_jobs} concurrent workers." ) if hasattr(self._backend, 'start_call'): self._backend.start_call() # Following flag prevents double calls to `backend.stop_call`. self._calling = True iterator = iter(iterable) pre_dispatch = self.pre_dispatch if pre_dispatch == 'all': # prevent further dispatch via multiprocessing callback thread self._original_iterator = None self._pre_dispatch_amount = 0 else: self._original_iterator = iterator if hasattr(pre_dispatch, 'endswith'): pre_dispatch = eval_expr( pre_dispatch.replace("n_jobs", str(n_jobs)) ) self._pre_dispatch_amount = pre_dispatch = int(pre_dispatch) # The main thread will consume the first pre_dispatch items and # the remaining items will later be lazily dispatched by async # callbacks upon task completions. # TODO: this iterator should be batch_size * n_jobs iterator = itertools.islice(iterator, self._pre_dispatch_amount) # Use a caching dict for callables that are pickled with cloudpickle to # improve performances. This cache is used only in the case of # functions that are defined in the __main__ module, functions that # are defined locally (inside another function) and lambda expressions. self._pickle_cache = dict() output = self._get_outputs(iterator, pre_dispatch) self._call_ref = weakref.ref(output) # The first item from the output is blank, but it makes the interpreter # progress until it enters the Try/Except block of the generator and # reach the first `yield` statement. This starts the aynchronous # dispatch of the tasks to the workers. next(output) return output if self.return_generator else list(output) def __repr__(self): return '%s(n_jobs=%s)' % (self.__class__.__name__, self.n_jobs) PKaZZZ��%K8K8joblib/pool.py"""Custom implementation of multiprocessing.Pool with custom pickler. This module provides efficient ways of working with data stored in shared memory with numpy.memmap arrays without inducing any memory copy between the parent and child processes. This module should not be imported if multiprocessing is not available as it implements subclasses of multiprocessing Pool that uses a custom alternative to SimpleQueue. """ # Author: Olivier Grisel <olivier.grisel@ensta.org> # Copyright: 2012, Olivier Grisel # License: BSD 3 clause import copyreg import sys import warnings from time import sleep try: WindowsError except NameError: WindowsError = type(None) from pickle import Pickler from pickle import HIGHEST_PROTOCOL from io import BytesIO from ._memmapping_reducer import get_memmapping_reducers from ._memmapping_reducer import TemporaryResourcesManager from ._multiprocessing_helpers import mp, assert_spawning # We need the class definition to derive from it, not the multiprocessing.Pool # factory function from multiprocessing.pool import Pool try: import numpy as np except ImportError: np = None ############################################################################### # Enable custom pickling in Pool queues class CustomizablePickler(Pickler): """Pickler that accepts custom reducers. TODO python2_drop : can this be simplified ? HIGHEST_PROTOCOL is selected by default as this pickler is used to pickle ephemeral datastructures for interprocess communication hence no backward compatibility is required. `reducers` is expected to be a dictionary with key/values being `(type, callable)` pairs where `callable` is a function that give an instance of `type` will return a tuple `(constructor, tuple_of_objects)` to rebuild an instance out of the pickled `tuple_of_objects` as would return a `__reduce__` method. See the standard library documentation on pickling for more details. """ # We override the pure Python pickler as its the only way to be able to # customize the dispatch table without side effects in Python 2.7 # to 3.2. For Python 3.3+ leverage the new dispatch_table # feature from https://bugs.python.org/issue14166 that makes it possible # to use the C implementation of the Pickler which is faster. def __init__(self, writer, reducers=None, protocol=HIGHEST_PROTOCOL): Pickler.__init__(self, writer, protocol=protocol) if reducers is None: reducers = {} if hasattr(Pickler, 'dispatch'): # Make the dispatch registry an instance level attribute instead of # a reference to the class dictionary under Python 2 self.dispatch = Pickler.dispatch.copy() else: # Under Python 3 initialize the dispatch table with a copy of the # default registry self.dispatch_table = copyreg.dispatch_table.copy() for type, reduce_func in reducers.items(): self.register(type, reduce_func) def register(self, type, reduce_func): """Attach a reducer function to a given type in the dispatch table.""" if hasattr(Pickler, 'dispatch'): # Python 2 pickler dispatching is not explicitly customizable. # Let us use a closure to workaround this limitation. def dispatcher(self, obj): reduced = reduce_func(obj) self.save_reduce(obj=obj, *reduced) self.dispatch[type] = dispatcher else: self.dispatch_table[type] = reduce_func class CustomizablePicklingQueue(object): """Locked Pipe implementation that uses a customizable pickler. This class is an alternative to the multiprocessing implementation of SimpleQueue in order to make it possible to pass custom pickling reducers, for instance to avoid memory copy when passing memory mapped datastructures. `reducers` is expected to be a dict with key / values being `(type, callable)` pairs where `callable` is a function that, given an instance of `type`, will return a tuple `(constructor, tuple_of_objects)` to rebuild an instance out of the pickled `tuple_of_objects` as would return a `__reduce__` method. See the standard library documentation on pickling for more details. """ def __init__(self, context, reducers=None): self._reducers = reducers self._reader, self._writer = context.Pipe(duplex=False) self._rlock = context.Lock() if sys.platform == 'win32': self._wlock = None else: self._wlock = context.Lock() self._make_methods() def __getstate__(self): assert_spawning(self) return (self._reader, self._writer, self._rlock, self._wlock, self._reducers) def __setstate__(self, state): (self._reader, self._writer, self._rlock, self._wlock, self._reducers) = state self._make_methods() def empty(self): return not self._reader.poll() def _make_methods(self): self._recv = recv = self._reader.recv racquire, rrelease = self._rlock.acquire, self._rlock.release def get(): racquire() try: return recv() finally: rrelease() self.get = get if self._reducers: def send(obj): buffer = BytesIO() CustomizablePickler(buffer, self._reducers).dump(obj) self._writer.send_bytes(buffer.getvalue()) self._send = send else: self._send = send = self._writer.send if self._wlock is None: # writes to a message oriented win32 pipe are atomic self.put = send else: wlock_acquire, wlock_release = ( self._wlock.acquire, self._wlock.release) def put(obj): wlock_acquire() try: return send(obj) finally: wlock_release() self.put = put class PicklingPool(Pool): """Pool implementation with customizable pickling reducers. This is useful to control how data is shipped between processes and makes it possible to use shared memory without useless copies induces by the default pickling methods of the original objects passed as arguments to dispatch. `forward_reducers` and `backward_reducers` are expected to be dictionaries with key/values being `(type, callable)` pairs where `callable` is a function that, given an instance of `type`, will return a tuple `(constructor, tuple_of_objects)` to rebuild an instance out of the pickled `tuple_of_objects` as would return a `__reduce__` method. See the standard library documentation about pickling for more details. """ def __init__(self, processes=None, forward_reducers=None, backward_reducers=None, **kwargs): if forward_reducers is None: forward_reducers = dict() if backward_reducers is None: backward_reducers = dict() self._forward_reducers = forward_reducers self._backward_reducers = backward_reducers poolargs = dict(processes=processes) poolargs.update(kwargs) super(PicklingPool, self).__init__(**poolargs) def _setup_queues(self): context = getattr(self, '_ctx', mp) self._inqueue = CustomizablePicklingQueue(context, self._forward_reducers) self._outqueue = CustomizablePicklingQueue(context, self._backward_reducers) self._quick_put = self._inqueue._send self._quick_get = self._outqueue._recv class MemmappingPool(PicklingPool): """Process pool that shares large arrays to avoid memory copy. This drop-in replacement for `multiprocessing.pool.Pool` makes it possible to work efficiently with shared memory in a numpy context. Existing instances of numpy.memmap are preserved: the child suprocesses will have access to the same shared memory in the original mode except for the 'w+' mode that is automatically transformed as 'r+' to avoid zeroing the original data upon instantiation. Furthermore large arrays from the parent process are automatically dumped to a temporary folder on the filesystem such as child processes to access their content via memmapping (file system backed shared memory). Note: it is important to call the terminate method to collect the temporary folder used by the pool. Parameters ---------- processes: int, optional Number of worker processes running concurrently in the pool. initializer: callable, optional Callable executed on worker process creation. initargs: tuple, optional Arguments passed to the initializer callable. temp_folder: (str, callable) optional If str: Folder to be used by the pool for memmapping large arrays for sharing memory with worker processes. If None, this will try in order: - a folder pointed by the JOBLIB_TEMP_FOLDER environment variable, - /dev/shm if the folder exists and is writable: this is a RAMdisk filesystem available by default on modern Linux distributions, - the default system temporary folder that can be overridden with TMP, TMPDIR or TEMP environment variables, typically /tmp under Unix operating systems. if callable: An callable in charge of dynamically resolving a temporary folder for memmapping large arrays. max_nbytes int or None, optional, 1e6 by default Threshold on the size of arrays passed to the workers that triggers automated memory mapping in temp_folder. Use None to disable memmapping of large arrays. mmap_mode: {'r+', 'r', 'w+', 'c'} Memmapping mode for numpy arrays passed to workers. See 'max_nbytes' parameter documentation for more details. forward_reducers: dictionary, optional Reducers used to pickle objects passed from master to worker processes: see below. backward_reducers: dictionary, optional Reducers used to pickle return values from workers back to the master process. verbose: int, optional Make it possible to monitor how the communication of numpy arrays with the subprocess is handled (pickling or memmapping) prewarm: bool or str, optional, "auto" by default. If True, force a read on newly memmapped array to make sure that OS pre-cache it in memory. This can be useful to avoid concurrent disk access when the same data array is passed to different worker processes. If "auto" (by default), prewarm is set to True, unless the Linux shared memory partition /dev/shm is available and used as temp folder. `forward_reducers` and `backward_reducers` are expected to be dictionaries with key/values being `(type, callable)` pairs where `callable` is a function that give an instance of `type` will return a tuple `(constructor, tuple_of_objects)` to rebuild an instance out of the pickled `tuple_of_objects` as would return a `__reduce__` method. See the standard library documentation on pickling for more details. """ def __init__(self, processes=None, temp_folder=None, max_nbytes=1e6, mmap_mode='r', forward_reducers=None, backward_reducers=None, verbose=0, context_id=None, prewarm=False, **kwargs): if context_id is not None: warnings.warn('context_id is deprecated and ignored in joblib' ' 0.9.4 and will be removed in 0.11', DeprecationWarning) manager = TemporaryResourcesManager(temp_folder) self._temp_folder_manager = manager # The usage of a temp_folder_resolver over a simple temp_folder is # superfluous for multiprocessing pools, as they don't get reused, see # get_memmapping_executor for more details. We still use it for code # simplicity. forward_reducers, backward_reducers = \ get_memmapping_reducers( temp_folder_resolver=manager.resolve_temp_folder_name, max_nbytes=max_nbytes, mmap_mode=mmap_mode, forward_reducers=forward_reducers, backward_reducers=backward_reducers, verbose=verbose, unlink_on_gc_collect=False, prewarm=prewarm) poolargs = dict( processes=processes, forward_reducers=forward_reducers, backward_reducers=backward_reducers) poolargs.update(kwargs) super(MemmappingPool, self).__init__(**poolargs) def terminate(self): n_retries = 10 for i in range(n_retries): try: super(MemmappingPool, self).terminate() break except OSError as e: if isinstance(e, WindowsError): # Workaround occasional "[Error 5] Access is denied" issue # when trying to terminate a process under windows. sleep(0.1) if i + 1 == n_retries: warnings.warn("Failed to terminate worker processes in" " multiprocessing pool: %r" % e) # Clean up the temporary resources as the workers should now be off. self._temp_folder_manager._clean_temporary_resources() @property def _temp_folder(self): # Legacy property in tests. could be removed if we refactored the # memmapping tests. SHOULD ONLY BE USED IN TESTS! # We cache this property because it is called late in the tests - at # this point, all context have been unregistered, and # resolve_temp_folder_name raises an error. if getattr(self, '_cached_temp_folder', None) is not None: return self._cached_temp_folder else: self._cached_temp_folder = self._temp_folder_manager.resolve_temp_folder_name() # noqa return self._cached_temp_folder PKaZZZ��  joblib/testing.py""" Helper for testing. """ import sys import warnings import os.path import re import subprocess import threading import pytest import _pytest raises = pytest.raises warns = pytest.warns SkipTest = _pytest.runner.Skipped skipif = pytest.mark.skipif fixture = pytest.fixture parametrize = pytest.mark.parametrize timeout = pytest.mark.timeout xfail = pytest.mark.xfail param = pytest.param def warnings_to_stdout(): """ Redirect all warnings to stdout. """ showwarning_orig = warnings.showwarning def showwarning(msg, cat, fname, lno, file=None, line=0): showwarning_orig(msg, cat, os.path.basename(fname), line, sys.stdout) warnings.showwarning = showwarning # warnings.simplefilter('always') def check_subprocess_call(cmd, timeout=5, stdout_regex=None, stderr_regex=None): """Runs a command in a subprocess with timeout in seconds. A SIGTERM is sent after `timeout` and if it does not terminate, a SIGKILL is sent after `2 * timeout`. Also checks returncode is zero, stdout if stdout_regex is set, and stderr if stderr_regex is set. """ proc = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) def terminate_process(): # pragma: no cover """ Attempt to terminate a leftover process spawned during test execution: ideally this should not be needed but can help avoid clogging the CI workers in case of deadlocks. """ warnings.warn(f"Timeout running {cmd}") proc.terminate() def kill_process(): # pragma: no cover """ Kill a leftover process spawned during test execution: ideally this should not be needed but can help avoid clogging the CI workers in case of deadlocks. """ warnings.warn(f"Timeout running {cmd}") proc.kill() try: if timeout is not None: terminate_timer = threading.Timer(timeout, terminate_process) terminate_timer.start() kill_timer = threading.Timer(2 * timeout, kill_process) kill_timer.start() stdout, stderr = proc.communicate() stdout, stderr = stdout.decode(), stderr.decode() if proc.returncode != 0: message = ( 'Non-zero return code: {}.\nStdout:\n{}\n' 'Stderr:\n{}').format( proc.returncode, stdout, stderr) raise ValueError(message) if (stdout_regex is not None and not re.search(stdout_regex, stdout)): raise ValueError( "Unexpected stdout: {!r} does not match:\n{!r}".format( stdout_regex, stdout)) if (stderr_regex is not None and not re.search(stderr_regex, stderr)): raise ValueError( "Unexpected stderr: {!r} does not match:\n{!r}".format( stderr_regex, stderr)) finally: if timeout is not None: terminate_timer.cancel() kill_timer.cancel() PKaZZZjoblib/externals/__init__.pyPKaZZZ�e>�44(joblib/externals/cloudpickle/__init__.pyfrom . import cloudpickle from .cloudpickle import * # noqa __doc__ = cloudpickle.__doc__ __version__ = "3.0.0" __all__ = [ # noqa "__version__", "Pickler", "CloudPickler", "dumps", "loads", "dump", "load", "register_pickle_by_value", "unregister_pickle_by_value", ] PKaZZZ��&�����+joblib/externals/cloudpickle/cloudpickle.py"""Pickler class to extend the standard pickle.Pickler functionality The main objective is to make it natural to perform distributed computing on clusters (such as PySpark, Dask, Ray...) with interactively defined code (functions, classes, ...) written in notebooks or console. In particular this pickler adds the following features: - serialize interactively-defined or locally-defined functions, classes, enums, typevars, lambdas and nested functions to compiled byte code; - deal with some other non-serializable objects in an ad-hoc manner where applicable. This pickler is therefore meant to be used for the communication between short lived Python processes running the same version of Python and libraries. In particular, it is not meant to be used for long term storage of Python objects. It does not include an unpickler, as standard Python unpickling suffices. This module was extracted from the `cloud` package, developed by `PiCloud, Inc. <https://web.archive.org/web/20140626004012/http://www.picloud.com/>`_. Copyright (c) 2012-now, CloudPickle developers and contributors. Copyright (c) 2012, Regents of the University of California. Copyright (c) 2009 `PiCloud, Inc. <https://web.archive.org/web/20140626004012/http://www.picloud.com/>`_. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the University of California, Berkeley nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ import _collections_abc from collections import ChainMap, OrderedDict import abc import builtins import copyreg import dataclasses import dis from enum import Enum import io import itertools import logging import opcode import pickle from pickle import _getattribute import platform import struct import sys import threading import types import typing import uuid import warnings import weakref # The following import is required to be imported in the cloudpickle # namespace to be able to load pickle files generated with older versions of # cloudpickle. See: tests/test_backward_compat.py from types import CellType # noqa: F401 # cloudpickle is meant for inter process communication: we expect all # communicating processes to run the same Python version hence we favor # communication speed over compatibility: DEFAULT_PROTOCOL = pickle.HIGHEST_PROTOCOL # Names of modules whose resources should be treated as dynamic. _PICKLE_BY_VALUE_MODULES = set() # Track the provenance of reconstructed dynamic classes to make it possible to # reconstruct instances from the matching singleton class definition when # appropriate and preserve the usual "isinstance" semantics of Python objects. _DYNAMIC_CLASS_TRACKER_BY_CLASS = weakref.WeakKeyDictionary() _DYNAMIC_CLASS_TRACKER_BY_ID = weakref.WeakValueDictionary() _DYNAMIC_CLASS_TRACKER_LOCK = threading.Lock() PYPY = platform.python_implementation() == "PyPy" builtin_code_type = None if PYPY: # builtin-code objects only exist in pypy builtin_code_type = type(float.__new__.__code__) _extract_code_globals_cache = weakref.WeakKeyDictionary() def _get_or_create_tracker_id(class_def): with _DYNAMIC_CLASS_TRACKER_LOCK: class_tracker_id = _DYNAMIC_CLASS_TRACKER_BY_CLASS.get(class_def) if class_tracker_id is None: class_tracker_id = uuid.uuid4().hex _DYNAMIC_CLASS_TRACKER_BY_CLASS[class_def] = class_tracker_id _DYNAMIC_CLASS_TRACKER_BY_ID[class_tracker_id] = class_def return class_tracker_id def _lookup_class_or_track(class_tracker_id, class_def): if class_tracker_id is not None: with _DYNAMIC_CLASS_TRACKER_LOCK: class_def = _DYNAMIC_CLASS_TRACKER_BY_ID.setdefault( class_tracker_id, class_def ) _DYNAMIC_CLASS_TRACKER_BY_CLASS[class_def] = class_tracker_id return class_def def register_pickle_by_value(module): """Register a module to make it functions and classes picklable by value. By default, functions and classes that are attributes of an importable module are to be pickled by reference, that is relying on re-importing the attribute from the module at load time. If `register_pickle_by_value(module)` is called, all its functions and classes are subsequently to be pickled by value, meaning that they can be loaded in Python processes where the module is not importable. This is especially useful when developing a module in a distributed execution environment: restarting the client Python process with the new source code is enough: there is no need to re-install the new version of the module on all the worker nodes nor to restart the workers. Note: this feature is considered experimental. See the cloudpickle README.md file for more details and limitations. """ if not isinstance(module, types.ModuleType): raise ValueError(f"Input should be a module object, got {str(module)} instead") # In the future, cloudpickle may need a way to access any module registered # for pickling by value in order to introspect relative imports inside # functions pickled by value. (see # https://github.com/cloudpipe/cloudpickle/pull/417#issuecomment-873684633). # This access can be ensured by checking that module is present in # sys.modules at registering time and assuming that it will still be in # there when accessed during pickling. Another alternative would be to # store a weakref to the module. Even though cloudpickle does not implement # this introspection yet, in order to avoid a possible breaking change # later, we still enforce the presence of module inside sys.modules. if module.__name__ not in sys.modules: raise ValueError( f"{module} was not imported correctly, have you used an " "`import` statement to access it?" ) _PICKLE_BY_VALUE_MODULES.add(module.__name__) def unregister_pickle_by_value(module): """Unregister that the input module should be pickled by value.""" if not isinstance(module, types.ModuleType): raise ValueError(f"Input should be a module object, got {str(module)} instead") if module.__name__ not in _PICKLE_BY_VALUE_MODULES: raise ValueError(f"{module} is not registered for pickle by value") else: _PICKLE_BY_VALUE_MODULES.remove(module.__name__) def list_registry_pickle_by_value(): return _PICKLE_BY_VALUE_MODULES.copy() def _is_registered_pickle_by_value(module): module_name = module.__name__ if module_name in _PICKLE_BY_VALUE_MODULES: return True while True: parent_name = module_name.rsplit(".", 1)[0] if parent_name == module_name: break if parent_name in _PICKLE_BY_VALUE_MODULES: return True module_name = parent_name return False def _whichmodule(obj, name): """Find the module an object belongs to. This function differs from ``pickle.whichmodule`` in two ways: - it does not mangle the cases where obj's module is __main__ and obj was not found in any module. - Errors arising during module introspection are ignored, as those errors are considered unwanted side effects. """ module_name = getattr(obj, "__module__", None) if module_name is not None: return module_name # Protect the iteration by using a copy of sys.modules against dynamic # modules that trigger imports of other modules upon calls to getattr or # other threads importing at the same time. for module_name, module in sys.modules.copy().items(): # Some modules such as coverage can inject non-module objects inside # sys.modules if ( module_name == "__main__" or module is None or not isinstance(module, types.ModuleType) ): continue try: if _getattribute(module, name)[0] is obj: return module_name except Exception: pass return None def _should_pickle_by_reference(obj, name=None): """Test whether an function or a class should be pickled by reference Pickling by reference means by that the object (typically a function or a class) is an attribute of a module that is assumed to be importable in the target Python environment. Loading will therefore rely on importing the module and then calling `getattr` on it to access the function or class. Pickling by reference is the only option to pickle functions and classes in the standard library. In cloudpickle the alternative option is to pickle by value (for instance for interactively or locally defined functions and classes or for attributes of modules that have been explicitly registered to be pickled by value. """ if isinstance(obj, types.FunctionType) or issubclass(type(obj), type): module_and_name = _lookup_module_and_qualname(obj, name=name) if module_and_name is None: return False module, name = module_and_name return not _is_registered_pickle_by_value(module) elif isinstance(obj, types.ModuleType): # We assume that sys.modules is primarily used as a cache mechanism for # the Python import machinery. Checking if a module has been added in # is sys.modules therefore a cheap and simple heuristic to tell us # whether we can assume that a given module could be imported by name # in another Python process. if _is_registered_pickle_by_value(obj): return False return obj.__name__ in sys.modules else: raise TypeError( "cannot check importability of {} instances".format(type(obj).__name__) ) def _lookup_module_and_qualname(obj, name=None): if name is None: name = getattr(obj, "__qualname__", None) if name is None: # pragma: no cover # This used to be needed for Python 2.7 support but is probably not # needed anymore. However we keep the __name__ introspection in case # users of cloudpickle rely on this old behavior for unknown reasons. name = getattr(obj, "__name__", None) module_name = _whichmodule(obj, name) if module_name is None: # In this case, obj.__module__ is None AND obj was not found in any # imported module. obj is thus treated as dynamic. return None if module_name == "__main__": return None # Note: if module_name is in sys.modules, the corresponding module is # assumed importable at unpickling time. See #357 module = sys.modules.get(module_name, None) if module is None: # The main reason why obj's module would not be imported is that this # module has been dynamically created, using for example # types.ModuleType. The other possibility is that module was removed # from sys.modules after obj was created/imported. But this case is not # supported, as the standard pickle does not support it either. return None try: obj2, parent = _getattribute(module, name) except AttributeError: # obj was not found inside the module it points to return None if obj2 is not obj: return None return module, name def _extract_code_globals(co): """Find all globals names read or written to by codeblock co.""" out_names = _extract_code_globals_cache.get(co) if out_names is None: # We use a dict with None values instead of a set to get a # deterministic order and avoid introducing non-deterministic pickle # bytes as a results. out_names = {name: None for name in _walk_global_ops(co)} # Declaring a function inside another one using the "def ..." syntax # generates a constant code object corresponding to the one of the # nested function's As the nested function may itself need global # variables, we need to introspect its code, extract its globals, (look # for code object in it's co_consts attribute..) and add the result to # code_globals if co.co_consts: for const in co.co_consts: if isinstance(const, types.CodeType): out_names.update(_extract_code_globals(const)) _extract_code_globals_cache[co] = out_names return out_names def _find_imported_submodules(code, top_level_dependencies): """Find currently imported submodules used by a function. Submodules used by a function need to be detected and referenced for the function to work correctly at depickling time. Because submodules can be referenced as attribute of their parent package (``package.submodule``), we need a special introspection technique that does not rely on GLOBAL-related opcodes to find references of them in a code object. Example: ``` import concurrent.futures import cloudpickle def func(): x = concurrent.futures.ThreadPoolExecutor if __name__ == '__main__': cloudpickle.dumps(func) ``` The globals extracted by cloudpickle in the function's state include the concurrent package, but not its submodule (here, concurrent.futures), which is the module used by func. Find_imported_submodules will detect the usage of concurrent.futures. Saving this module alongside with func will ensure that calling func once depickled does not fail due to concurrent.futures not being imported """ subimports = [] # check if any known dependency is an imported package for x in top_level_dependencies: if ( isinstance(x, types.ModuleType) and hasattr(x, "__package__") and x.__package__ ): # check if the package has any currently loaded sub-imports prefix = x.__name__ + "." # A concurrent thread could mutate sys.modules, # make sure we iterate over a copy to avoid exceptions for name in list(sys.modules): # Older versions of pytest will add a "None" module to # sys.modules. if name is not None and name.startswith(prefix): # check whether the function can address the sub-module tokens = set(name[len(prefix) :].split(".")) if not tokens - set(code.co_names): subimports.append(sys.modules[name]) return subimports # relevant opcodes STORE_GLOBAL = opcode.opmap["STORE_GLOBAL"] DELETE_GLOBAL = opcode.opmap["DELETE_GLOBAL"] LOAD_GLOBAL = opcode.opmap["LOAD_GLOBAL"] GLOBAL_OPS = (STORE_GLOBAL, DELETE_GLOBAL, LOAD_GLOBAL) HAVE_ARGUMENT = dis.HAVE_ARGUMENT EXTENDED_ARG = dis.EXTENDED_ARG _BUILTIN_TYPE_NAMES = {} for k, v in types.__dict__.items(): if type(v) is type: _BUILTIN_TYPE_NAMES[v] = k def _builtin_type(name): if name == "ClassType": # pragma: no cover # Backward compat to load pickle files generated with cloudpickle # < 1.3 even if loading pickle files from older versions is not # officially supported. return type return getattr(types, name) def _walk_global_ops(code): """Yield referenced name for global-referencing instructions in code.""" for instr in dis.get_instructions(code): op = instr.opcode if op in GLOBAL_OPS: yield instr.argval def _extract_class_dict(cls): """Retrieve a copy of the dict of a class without the inherited method.""" clsdict = dict(cls.__dict__) # copy dict proxy to a dict if len(cls.__bases__) == 1: inherited_dict = cls.__bases__[0].__dict__ else: inherited_dict = {} for base in reversed(cls.__bases__): inherited_dict.update(base.__dict__) to_remove = [] for name, value in clsdict.items(): try: base_value = inherited_dict[name] if value is base_value: to_remove.append(name) except KeyError: pass for name in to_remove: clsdict.pop(name) return clsdict def is_tornado_coroutine(func): """Return whether `func` is a Tornado coroutine function. Running coroutines are not supported. """ warnings.warn( "is_tornado_coroutine is deprecated in cloudpickle 3.0 and will be " "removed in cloudpickle 4.0. Use tornado.gen.is_coroutine_function " "directly instead.", category=DeprecationWarning, ) if "tornado.gen" not in sys.modules: return False gen = sys.modules["tornado.gen"] if not hasattr(gen, "is_coroutine_function"): # Tornado version is too old return False return gen.is_coroutine_function(func) def subimport(name): # We cannot do simply: `return __import__(name)`: Indeed, if ``name`` is # the name of a submodule, __import__ will return the top-level root module # of this submodule. For instance, __import__('os.path') returns the `os` # module. __import__(name) return sys.modules[name] def dynamic_subimport(name, vars): mod = types.ModuleType(name) mod.__dict__.update(vars) mod.__dict__["__builtins__"] = builtins.__dict__ return mod def _get_cell_contents(cell): try: return cell.cell_contents except ValueError: # Handle empty cells explicitly with a sentinel value. return _empty_cell_value def instance(cls): """Create a new instance of a class. Parameters ---------- cls : type The class to create an instance of. Returns ------- instance : cls A new instance of ``cls``. """ return cls() @instance class _empty_cell_value: """Sentinel for empty closures.""" @classmethod def __reduce__(cls): return cls.__name__ def _make_function(code, globals, name, argdefs, closure): # Setting __builtins__ in globals is needed for nogil CPython. globals["__builtins__"] = __builtins__ return types.FunctionType(code, globals, name, argdefs, closure) def _make_empty_cell(): if False: # trick the compiler into creating an empty cell in our lambda cell = None raise AssertionError("this route should not be executed") return (lambda: cell).__closure__[0] def _make_cell(value=_empty_cell_value): cell = _make_empty_cell() if value is not _empty_cell_value: cell.cell_contents = value return cell def _make_skeleton_class( type_constructor, name, bases, type_kwargs, class_tracker_id, extra ): """Build dynamic class with an empty __dict__ to be filled once memoized If class_tracker_id is not None, try to lookup an existing class definition matching that id. If none is found, track a newly reconstructed class definition under that id so that other instances stemming from the same class id will also reuse this class definition. The "extra" variable is meant to be a dict (or None) that can be used for forward compatibility shall the need arise. """ skeleton_class = types.new_class( name, bases, {"metaclass": type_constructor}, lambda ns: ns.update(type_kwargs) ) return _lookup_class_or_track(class_tracker_id, skeleton_class) def _make_skeleton_enum( bases, name, qualname, members, module, class_tracker_id, extra ): """Build dynamic enum with an empty __dict__ to be filled once memoized The creation of the enum class is inspired by the code of EnumMeta._create_. If class_tracker_id is not None, try to lookup an existing enum definition matching that id. If none is found, track a newly reconstructed enum definition under that id so that other instances stemming from the same class id will also reuse this enum definition. The "extra" variable is meant to be a dict (or None) that can be used for forward compatibility shall the need arise. """ # enums always inherit from their base Enum class at the last position in # the list of base classes: enum_base = bases[-1] metacls = enum_base.__class__ classdict = metacls.__prepare__(name, bases) for member_name, member_value in members.items(): classdict[member_name] = member_value enum_class = metacls.__new__(metacls, name, bases, classdict) enum_class.__module__ = module enum_class.__qualname__ = qualname return _lookup_class_or_track(class_tracker_id, enum_class) def _make_typevar(name, bound, constraints, covariant, contravariant, class_tracker_id): tv = typing.TypeVar( name, *constraints, bound=bound, covariant=covariant, contravariant=contravariant, ) return _lookup_class_or_track(class_tracker_id, tv) def _decompose_typevar(obj): return ( obj.__name__, obj.__bound__, obj.__constraints__, obj.__covariant__, obj.__contravariant__, _get_or_create_tracker_id(obj), ) def _typevar_reduce(obj): # TypeVar instances require the module information hence why we # are not using the _should_pickle_by_reference directly module_and_name = _lookup_module_and_qualname(obj, name=obj.__name__) if module_and_name is None: return (_make_typevar, _decompose_typevar(obj)) elif _is_registered_pickle_by_value(module_and_name[0]): return (_make_typevar, _decompose_typevar(obj)) return (getattr, module_and_name) def _get_bases(typ): if "__orig_bases__" in getattr(typ, "__dict__", {}): # For generic types (see PEP 560) # Note that simply checking `hasattr(typ, '__orig_bases__')` is not # correct. Subclasses of a fully-parameterized generic class does not # have `__orig_bases__` defined, but `hasattr(typ, '__orig_bases__')` # will return True because it's defined in the base class. bases_attr = "__orig_bases__" else: # For regular class objects bases_attr = "__bases__" return getattr(typ, bases_attr) def _make_dict_keys(obj, is_ordered=False): if is_ordered: return OrderedDict.fromkeys(obj).keys() else: return dict.fromkeys(obj).keys() def _make_dict_values(obj, is_ordered=False): if is_ordered: return OrderedDict((i, _) for i, _ in enumerate(obj)).values() else: return {i: _ for i, _ in enumerate(obj)}.values() def _make_dict_items(obj, is_ordered=False): if is_ordered: return OrderedDict(obj).items() else: return obj.items() # COLLECTION OF OBJECTS __getnewargs__-LIKE METHODS # ------------------------------------------------- def _class_getnewargs(obj): type_kwargs = {} if "__module__" in obj.__dict__: type_kwargs["__module__"] = obj.__module__ __dict__ = obj.__dict__.get("__dict__", None) if isinstance(__dict__, property): type_kwargs["__dict__"] = __dict__ return ( type(obj), obj.__name__, _get_bases(obj), type_kwargs, _get_or_create_tracker_id(obj), None, ) def _enum_getnewargs(obj): members = {e.name: e.value for e in obj} return ( obj.__bases__, obj.__name__, obj.__qualname__, members, obj.__module__, _get_or_create_tracker_id(obj), None, ) # COLLECTION OF OBJECTS RECONSTRUCTORS # ------------------------------------ def _file_reconstructor(retval): return retval # COLLECTION OF OBJECTS STATE GETTERS # ----------------------------------- def _function_getstate(func): # - Put func's dynamic attributes (stored in func.__dict__) in state. These # attributes will be restored at unpickling time using # f.__dict__.update(state) # - Put func's members into slotstate. Such attributes will be restored at # unpickling time by iterating over slotstate and calling setattr(func, # slotname, slotvalue) slotstate = { "__name__": func.__name__, "__qualname__": func.__qualname__, "__annotations__": func.__annotations__, "__kwdefaults__": func.__kwdefaults__, "__defaults__": func.__defaults__, "__module__": func.__module__, "__doc__": func.__doc__, "__closure__": func.__closure__, } f_globals_ref = _extract_code_globals(func.__code__) f_globals = {k: func.__globals__[k] for k in f_globals_ref if k in func.__globals__} if func.__closure__ is not None: closure_values = list(map(_get_cell_contents, func.__closure__)) else: closure_values = () # Extract currently-imported submodules used by func. Storing these modules # in a smoke _cloudpickle_subimports attribute of the object's state will # trigger the side effect of importing these modules at unpickling time # (which is necessary for func to work correctly once depickled) slotstate["_cloudpickle_submodules"] = _find_imported_submodules( func.__code__, itertools.chain(f_globals.values(), closure_values) ) slotstate["__globals__"] = f_globals state = func.__dict__ return state, slotstate def _class_getstate(obj): clsdict = _extract_class_dict(obj) clsdict.pop("__weakref__", None) if issubclass(type(obj), abc.ABCMeta): # If obj is an instance of an ABCMeta subclass, don't pickle the # cache/negative caches populated during isinstance/issubclass # checks, but pickle the list of registered subclasses of obj. clsdict.pop("_abc_cache", None) clsdict.pop("_abc_negative_cache", None) clsdict.pop("_abc_negative_cache_version", None) registry = clsdict.pop("_abc_registry", None) if registry is None: # The abc caches and registered subclasses of a # class are bundled into the single _abc_impl attribute clsdict.pop("_abc_impl", None) (registry, _, _, _) = abc._get_dump(obj) clsdict["_abc_impl"] = [subclass_weakref() for subclass_weakref in registry] else: # In the above if clause, registry is a set of weakrefs -- in # this case, registry is a WeakSet clsdict["_abc_impl"] = [type_ for type_ in registry] if "__slots__" in clsdict: # pickle string length optimization: member descriptors of obj are # created automatically from obj's __slots__ attribute, no need to # save them in obj's state if isinstance(obj.__slots__, str): clsdict.pop(obj.__slots__) else: for k in obj.__slots__: clsdict.pop(k, None) clsdict.pop("__dict__", None) # unpicklable property object return (clsdict, {}) def _enum_getstate(obj): clsdict, slotstate = _class_getstate(obj) members = {e.name: e.value for e in obj} # Cleanup the clsdict that will be passed to _make_skeleton_enum: # Those attributes are already handled by the metaclass. for attrname in [ "_generate_next_value_", "_member_names_", "_member_map_", "_member_type_", "_value2member_map_", ]: clsdict.pop(attrname, None) for member in members: clsdict.pop(member) # Special handling of Enum subclasses return clsdict, slotstate # COLLECTIONS OF OBJECTS REDUCERS # ------------------------------- # A reducer is a function taking a single argument (obj), and that returns a # tuple with all the necessary data to re-construct obj. Apart from a few # exceptions (list, dict, bytes, int, etc.), a reducer is necessary to # correctly pickle an object. # While many built-in objects (Exceptions objects, instances of the "object" # class, etc), are shipped with their own built-in reducer (invoked using # obj.__reduce__), some do not. The following methods were created to "fill # these holes". def _code_reduce(obj): """code object reducer.""" # If you are not sure about the order of arguments, take a look at help # of the specific type from types, for example: # >>> from types import CodeType # >>> help(CodeType) if hasattr(obj, "co_exceptiontable"): # Python 3.11 and later: there are some new attributes # related to the enhanced exceptions. args = ( obj.co_argcount, obj.co_posonlyargcount, obj.co_kwonlyargcount, obj.co_nlocals, obj.co_stacksize, obj.co_flags, obj.co_code, obj.co_consts, obj.co_names, obj.co_varnames, obj.co_filename, obj.co_name, obj.co_qualname, obj.co_firstlineno, obj.co_linetable, obj.co_exceptiontable, obj.co_freevars, obj.co_cellvars, ) elif hasattr(obj, "co_linetable"): # Python 3.10 and later: obj.co_lnotab is deprecated and constructor # expects obj.co_linetable instead. args = ( obj.co_argcount, obj.co_posonlyargcount, obj.co_kwonlyargcount, obj.co_nlocals, obj.co_stacksize, obj.co_flags, obj.co_code, obj.co_consts, obj.co_names, obj.co_varnames, obj.co_filename, obj.co_name, obj.co_firstlineno, obj.co_linetable, obj.co_freevars, obj.co_cellvars, ) elif hasattr(obj, "co_nmeta"): # pragma: no cover # "nogil" Python: modified attributes from 3.9 args = ( obj.co_argcount, obj.co_posonlyargcount, obj.co_kwonlyargcount, obj.co_nlocals, obj.co_framesize, obj.co_ndefaultargs, obj.co_nmeta, obj.co_flags, obj.co_code, obj.co_consts, obj.co_varnames, obj.co_filename, obj.co_name, obj.co_firstlineno, obj.co_lnotab, obj.co_exc_handlers, obj.co_jump_table, obj.co_freevars, obj.co_cellvars, obj.co_free2reg, obj.co_cell2reg, ) else: # Backward compat for 3.8 and 3.9 args = ( obj.co_argcount, obj.co_posonlyargcount, obj.co_kwonlyargcount, obj.co_nlocals, obj.co_stacksize, obj.co_flags, obj.co_code, obj.co_consts, obj.co_names, obj.co_varnames, obj.co_filename, obj.co_name, obj.co_firstlineno, obj.co_lnotab, obj.co_freevars, obj.co_cellvars, ) return types.CodeType, args def _cell_reduce(obj): """Cell (containing values of a function's free variables) reducer.""" try: obj.cell_contents except ValueError: # cell is empty return _make_empty_cell, () else: return _make_cell, (obj.cell_contents,) def _classmethod_reduce(obj): orig_func = obj.__func__ return type(obj), (orig_func,) def _file_reduce(obj): """Save a file.""" import io if not hasattr(obj, "name") or not hasattr(obj, "mode"): raise pickle.PicklingError( "Cannot pickle files that do not map to an actual file" ) if obj is sys.stdout: return getattr, (sys, "stdout") if obj is sys.stderr: return getattr, (sys, "stderr") if obj is sys.stdin: raise pickle.PicklingError("Cannot pickle standard input") if obj.closed: raise pickle.PicklingError("Cannot pickle closed files") if hasattr(obj, "isatty") and obj.isatty(): raise pickle.PicklingError("Cannot pickle files that map to tty objects") if "r" not in obj.mode and "+" not in obj.mode: raise pickle.PicklingError( "Cannot pickle files that are not opened for reading: %s" % obj.mode ) name = obj.name retval = io.StringIO() try: # Read the whole file curloc = obj.tell() obj.seek(0) contents = obj.read() obj.seek(curloc) except OSError as e: raise pickle.PicklingError( "Cannot pickle file %s as it cannot be read" % name ) from e retval.write(contents) retval.seek(curloc) retval.name = name return _file_reconstructor, (retval,) def _getset_descriptor_reduce(obj): return getattr, (obj.__objclass__, obj.__name__) def _mappingproxy_reduce(obj): return types.MappingProxyType, (dict(obj),) def _memoryview_reduce(obj): return bytes, (obj.tobytes(),) def _module_reduce(obj): if _should_pickle_by_reference(obj): return subimport, (obj.__name__,) else: # Some external libraries can populate the "__builtins__" entry of a # module's `__dict__` with unpicklable objects (see #316). For that # reason, we do not attempt to pickle the "__builtins__" entry, and # restore a default value for it at unpickling time. state = obj.__dict__.copy() state.pop("__builtins__", None) return dynamic_subimport, (obj.__name__, state) def _method_reduce(obj): return (types.MethodType, (obj.__func__, obj.__self__)) def _logger_reduce(obj): return logging.getLogger, (obj.name,) def _root_logger_reduce(obj): return logging.getLogger, () def _property_reduce(obj): return property, (obj.fget, obj.fset, obj.fdel, obj.__doc__) def _weakset_reduce(obj): return weakref.WeakSet, (list(obj),) def _dynamic_class_reduce(obj): """Save a class that can't be referenced as a module attribute. This method is used to serialize classes that are defined inside functions, or that otherwise can't be serialized as attribute lookups from importable modules. """ if Enum is not None and issubclass(obj, Enum): return ( _make_skeleton_enum, _enum_getnewargs(obj), _enum_getstate(obj), None, None, _class_setstate, ) else: return ( _make_skeleton_class, _class_getnewargs(obj), _class_getstate(obj), None, None, _class_setstate, ) def _class_reduce(obj): """Select the reducer depending on the dynamic nature of the class obj.""" if obj is type(None): # noqa return type, (None,) elif obj is type(Ellipsis): return type, (Ellipsis,) elif obj is type(NotImplemented): return type, (NotImplemented,) elif obj in _BUILTIN_TYPE_NAMES: return _builtin_type, (_BUILTIN_TYPE_NAMES[obj],) elif not _should_pickle_by_reference(obj): return _dynamic_class_reduce(obj) return NotImplemented def _dict_keys_reduce(obj): # Safer not to ship the full dict as sending the rest might # be unintended and could potentially cause leaking of # sensitive information return _make_dict_keys, (list(obj),) def _dict_values_reduce(obj): # Safer not to ship the full dict as sending the rest might # be unintended and could potentially cause leaking of # sensitive information return _make_dict_values, (list(obj),) def _dict_items_reduce(obj): return _make_dict_items, (dict(obj),) def _odict_keys_reduce(obj): # Safer not to ship the full dict as sending the rest might # be unintended and could potentially cause leaking of # sensitive information return _make_dict_keys, (list(obj), True) def _odict_values_reduce(obj): # Safer not to ship the full dict as sending the rest might # be unintended and could potentially cause leaking of # sensitive information return _make_dict_values, (list(obj), True) def _odict_items_reduce(obj): return _make_dict_items, (dict(obj), True) def _dataclass_field_base_reduce(obj): return _get_dataclass_field_type_sentinel, (obj.name,) # COLLECTIONS OF OBJECTS STATE SETTERS # ------------------------------------ # state setters are called at unpickling time, once the object is created and # it has to be updated to how it was at unpickling time. def _function_setstate(obj, state): """Update the state of a dynamic function. As __closure__ and __globals__ are readonly attributes of a function, we cannot rely on the native setstate routine of pickle.load_build, that calls setattr on items of the slotstate. Instead, we have to modify them inplace. """ state, slotstate = state obj.__dict__.update(state) obj_globals = slotstate.pop("__globals__") obj_closure = slotstate.pop("__closure__") # _cloudpickle_subimports is a set of submodules that must be loaded for # the pickled function to work correctly at unpickling time. Now that these # submodules are depickled (hence imported), they can be removed from the # object's state (the object state only served as a reference holder to # these submodules) slotstate.pop("_cloudpickle_submodules") obj.__globals__.update(obj_globals) obj.__globals__["__builtins__"] = __builtins__ if obj_closure is not None: for i, cell in enumerate(obj_closure): try: value = cell.cell_contents except ValueError: # cell is empty continue obj.__closure__[i].cell_contents = value for k, v in slotstate.items(): setattr(obj, k, v) def _class_setstate(obj, state): state, slotstate = state registry = None for attrname, attr in state.items(): if attrname == "_abc_impl": registry = attr else: setattr(obj, attrname, attr) if registry is not None: for subclass in registry: obj.register(subclass) return obj # COLLECTION OF DATACLASS UTILITIES # --------------------------------- # There are some internal sentinel values whose identity must be preserved when # unpickling dataclass fields. Each sentinel value has a unique name that we can # use to retrieve its identity at unpickling time. _DATACLASSE_FIELD_TYPE_SENTINELS = { dataclasses._FIELD.name: dataclasses._FIELD, dataclasses._FIELD_CLASSVAR.name: dataclasses._FIELD_CLASSVAR, dataclasses._FIELD_INITVAR.name: dataclasses._FIELD_INITVAR, } def _get_dataclass_field_type_sentinel(name): return _DATACLASSE_FIELD_TYPE_SENTINELS[name] class Pickler(pickle.Pickler): # set of reducers defined and used by cloudpickle (private) _dispatch_table = {} _dispatch_table[classmethod] = _classmethod_reduce _dispatch_table[io.TextIOWrapper] = _file_reduce _dispatch_table[logging.Logger] = _logger_reduce _dispatch_table[logging.RootLogger] = _root_logger_reduce _dispatch_table[memoryview] = _memoryview_reduce _dispatch_table[property] = _property_reduce _dispatch_table[staticmethod] = _classmethod_reduce _dispatch_table[CellType] = _cell_reduce _dispatch_table[types.CodeType] = _code_reduce _dispatch_table[types.GetSetDescriptorType] = _getset_descriptor_reduce _dispatch_table[types.ModuleType] = _module_reduce _dispatch_table[types.MethodType] = _method_reduce _dispatch_table[types.MappingProxyType] = _mappingproxy_reduce _dispatch_table[weakref.WeakSet] = _weakset_reduce _dispatch_table[typing.TypeVar] = _typevar_reduce _dispatch_table[_collections_abc.dict_keys] = _dict_keys_reduce _dispatch_table[_collections_abc.dict_values] = _dict_values_reduce _dispatch_table[_collections_abc.dict_items] = _dict_items_reduce _dispatch_table[type(OrderedDict().keys())] = _odict_keys_reduce _dispatch_table[type(OrderedDict().values())] = _odict_values_reduce _dispatch_table[type(OrderedDict().items())] = _odict_items_reduce _dispatch_table[abc.abstractmethod] = _classmethod_reduce _dispatch_table[abc.abstractclassmethod] = _classmethod_reduce _dispatch_table[abc.abstractstaticmethod] = _classmethod_reduce _dispatch_table[abc.abstractproperty] = _property_reduce _dispatch_table[dataclasses._FIELD_BASE] = _dataclass_field_base_reduce dispatch_table = ChainMap(_dispatch_table, copyreg.dispatch_table) # function reducers are defined as instance methods of cloudpickle.Pickler # objects, as they rely on a cloudpickle.Pickler attribute (globals_ref) def _dynamic_function_reduce(self, func): """Reduce a function that is not pickleable via attribute lookup.""" newargs = self._function_getnewargs(func) state = _function_getstate(func) return (_make_function, newargs, state, None, None, _function_setstate) def _function_reduce(self, obj): """Reducer for function objects. If obj is a top-level attribute of a file-backed module, this reducer returns NotImplemented, making the cloudpickle.Pickler fall back to traditional pickle.Pickler routines to save obj. Otherwise, it reduces obj using a custom cloudpickle reducer designed specifically to handle dynamic functions. """ if _should_pickle_by_reference(obj): return NotImplemented else: return self._dynamic_function_reduce(obj) def _function_getnewargs(self, func): code = func.__code__ # base_globals represents the future global namespace of func at # unpickling time. Looking it up and storing it in # cloudpickle.Pickler.globals_ref allow functions sharing the same # globals at pickling time to also share them once unpickled, at one # condition: since globals_ref is an attribute of a cloudpickle.Pickler # instance, and that a new cloudpickle.Pickler is created each time # cloudpickle.dump or cloudpickle.dumps is called, functions also need # to be saved within the same invocation of # cloudpickle.dump/cloudpickle.dumps (for example: # cloudpickle.dumps([f1, f2])). There is no such limitation when using # cloudpickle.Pickler.dump, as long as the multiple invocations are # bound to the same cloudpickle.Pickler instance. base_globals = self.globals_ref.setdefault(id(func.__globals__), {}) if base_globals == {}: # Add module attributes used to resolve relative imports # instructions inside func. for k in ["__package__", "__name__", "__path__", "__file__"]: if k in func.__globals__: base_globals[k] = func.__globals__[k] # Do not bind the free variables before the function is created to # avoid infinite recursion. if func.__closure__ is None: closure = None else: closure = tuple(_make_empty_cell() for _ in range(len(code.co_freevars))) return code, base_globals, None, None, closure def dump(self, obj): try: return super().dump(obj) except RuntimeError as e: if len(e.args) > 0 and "recursion" in e.args[0]: msg = "Could not pickle object as excessively deep recursion required." raise pickle.PicklingError(msg) from e else: raise def __init__(self, file, protocol=None, buffer_callback=None): if protocol is None: protocol = DEFAULT_PROTOCOL super().__init__(file, protocol=protocol, buffer_callback=buffer_callback) # map functions __globals__ attribute ids, to ensure that functions # sharing the same global namespace at pickling time also share # their global namespace at unpickling time. self.globals_ref = {} self.proto = int(protocol) if not PYPY: # pickle.Pickler is the C implementation of the CPython pickler and # therefore we rely on reduce_override method to customize the pickler # behavior. # `cloudpickle.Pickler.dispatch` is only left for backward # compatibility - note that when using protocol 5, # `cloudpickle.Pickler.dispatch` is not an extension of # `pickle._Pickler.dispatch` dictionary, because `cloudpickle.Pickler` # subclasses the C-implemented `pickle.Pickler`, which does not expose # a `dispatch` attribute. Earlier versions of `cloudpickle.Pickler` # used `cloudpickle.Pickler.dispatch` as a class-level attribute # storing all reducers implemented by cloudpickle, but the attribute # name was not a great choice given because it would collide with a # similarly named attribute in the pure-Python `pickle._Pickler` # implementation in the standard library. dispatch = dispatch_table # Implementation of the reducer_override callback, in order to # efficiently serialize dynamic functions and classes by subclassing # the C-implemented `pickle.Pickler`. # TODO: decorrelate reducer_override (which is tied to CPython's # implementation - would it make sense to backport it to pypy? - and # pickle's protocol 5 which is implementation agnostic. Currently, the # availability of both notions coincide on CPython's pickle, but it may # not be the case anymore when pypy implements protocol 5. def reducer_override(self, obj): """Type-agnostic reducing callback for function and classes. For performance reasons, subclasses of the C `pickle.Pickler` class cannot register custom reducers for functions and classes in the dispatch_table attribute. Reducers for such types must instead implemented via the special `reducer_override` method. Note that this method will be called for any object except a few builtin-types (int, lists, dicts etc.), which differs from reducers in the Pickler's dispatch_table, each of them being invoked for objects of a specific type only. This property comes in handy for classes: although most classes are instances of the ``type`` metaclass, some of them can be instances of other custom metaclasses (such as enum.EnumMeta for example). In particular, the metaclass will likely not be known in advance, and thus cannot be special-cased using an entry in the dispatch_table. reducer_override, among other things, allows us to register a reducer that will be called for any class, independently of its type. Notes: * reducer_override has the priority over dispatch_table-registered reducers. * reducer_override can be used to fix other limitations of cloudpickle for other types that suffered from type-specific reducers, such as Exceptions. See https://github.com/cloudpipe/cloudpickle/issues/248 """ t = type(obj) try: is_anyclass = issubclass(t, type) except TypeError: # t is not a class (old Boost; see SF #502085) is_anyclass = False if is_anyclass: return _class_reduce(obj) elif isinstance(obj, types.FunctionType): return self._function_reduce(obj) else: # fallback to save_global, including the Pickler's # dispatch_table return NotImplemented else: # When reducer_override is not available, hack the pure-Python # Pickler's types.FunctionType and type savers. Note: the type saver # must override Pickler.save_global, because pickle.py contains a # hard-coded call to save_global when pickling meta-classes. dispatch = pickle.Pickler.dispatch.copy() def _save_reduce_pickle5( self, func, args, state=None, listitems=None, dictitems=None, state_setter=None, obj=None, ): save = self.save write = self.write self.save_reduce( func, args, state=None, listitems=listitems, dictitems=dictitems, obj=obj, ) # backport of the Python 3.8 state_setter pickle operations save(state_setter) save(obj) # simple BINGET opcode as obj is already memoized. save(state) write(pickle.TUPLE2) # Trigger a state_setter(obj, state) function call. write(pickle.REDUCE) # The purpose of state_setter is to carry-out an # inplace modification of obj. We do not care about what the # method might return, so its output is eventually removed from # the stack. write(pickle.POP) def save_global(self, obj, name=None, pack=struct.pack): """Main dispatch method. The name of this method is somewhat misleading: all types get dispatched here. """ if obj is type(None): # noqa return self.save_reduce(type, (None,), obj=obj) elif obj is type(Ellipsis): return self.save_reduce(type, (Ellipsis,), obj=obj) elif obj is type(NotImplemented): return self.save_reduce(type, (NotImplemented,), obj=obj) elif obj in _BUILTIN_TYPE_NAMES: return self.save_reduce( _builtin_type, (_BUILTIN_TYPE_NAMES[obj],), obj=obj ) if name is not None: super().save_global(obj, name=name) elif not _should_pickle_by_reference(obj, name=name): self._save_reduce_pickle5(*_dynamic_class_reduce(obj), obj=obj) else: super().save_global(obj, name=name) dispatch[type] = save_global def save_function(self, obj, name=None): """Registered with the dispatch to handle all function types. Determines what kind of function obj is (e.g. lambda, defined at interactive prompt, etc) and handles the pickling appropriately. """ if _should_pickle_by_reference(obj, name=name): return super().save_global(obj, name=name) elif PYPY and isinstance(obj.__code__, builtin_code_type): return self.save_pypy_builtin_func(obj) else: return self._save_reduce_pickle5( *self._dynamic_function_reduce(obj), obj=obj ) def save_pypy_builtin_func(self, obj): """Save pypy equivalent of builtin functions. PyPy does not have the concept of builtin-functions. Instead, builtin-functions are simple function instances, but with a builtin-code attribute. Most of the time, builtin functions should be pickled by attribute. But PyPy has flaky support for __qualname__, so some builtin functions such as float.__new__ will be classified as dynamic. For this reason only, we created this special routine. Because builtin-functions are not expected to have closure or globals, there is no additional hack (compared the one already implemented in pickle) to protect ourselves from reference cycles. A simple (reconstructor, newargs, obj.__dict__) tuple is save_reduced. Note also that PyPy improved their support for __qualname__ in v3.6, so this routing should be removed when cloudpickle supports only PyPy 3.6 and later. """ rv = ( types.FunctionType, (obj.__code__, {}, obj.__name__, obj.__defaults__, obj.__closure__), obj.__dict__, ) self.save_reduce(*rv, obj=obj) dispatch[types.FunctionType] = save_function # Shorthands similar to pickle.dump/pickle.dumps def dump(obj, file, protocol=None, buffer_callback=None): """Serialize obj as bytes streamed into file protocol defaults to cloudpickle.DEFAULT_PROTOCOL which is an alias to pickle.HIGHEST_PROTOCOL. This setting favors maximum communication speed between processes running the same Python version. Set protocol=pickle.DEFAULT_PROTOCOL instead if you need to ensure compatibility with older versions of Python (although this is not always guaranteed to work because cloudpickle relies on some internal implementation details that can change from one Python version to the next). """ Pickler(file, protocol=protocol, buffer_callback=buffer_callback).dump(obj) def dumps(obj, protocol=None, buffer_callback=None): """Serialize obj as a string of bytes allocated in memory protocol defaults to cloudpickle.DEFAULT_PROTOCOL which is an alias to pickle.HIGHEST_PROTOCOL. This setting favors maximum communication speed between processes running the same Python version. Set protocol=pickle.DEFAULT_PROTOCOL instead if you need to ensure compatibility with older versions of Python (although this is not always guaranteed to work because cloudpickle relies on some internal implementation details that can change from one Python version to the next). """ with io.BytesIO() as file: cp = Pickler(file, protocol=protocol, buffer_callback=buffer_callback) cp.dump(obj) return file.getvalue() # Include pickles unloading functions in this namespace for convenience. load, loads = pickle.load, pickle.loads # Backward compat alias. CloudPickler = Pickler PKaZZZ�qM�BB0joblib/externals/cloudpickle/cloudpickle_fast.py"""Compatibility module. It can be necessary to load files generated by previous versions of cloudpickle that rely on symbols being defined under the `cloudpickle.cloudpickle_fast` namespace. See: tests/test_backward_compat.py """ from . import cloudpickle def __getattr__(name): return getattr(cloudpickle, name) PKaZZZ�=�PP!joblib/externals/loky/__init__.pyr"""The :mod:`loky` module manages a pool of worker that can be re-used across time. It provides a robust and dynamic implementation os the :class:`ProcessPoolExecutor` and a function :func:`get_reusable_executor` which hide the pool management under the hood. """ from concurrent.futures import ( ALL_COMPLETED, FIRST_COMPLETED, FIRST_EXCEPTION, CancelledError, Executor, TimeoutError, as_completed, wait, ) from ._base import Future from .backend.context import cpu_count from .backend.reduction import set_loky_pickler from .reusable_executor import get_reusable_executor from .cloudpickle_wrapper import wrap_non_picklable_objects from .process_executor import BrokenProcessPool, ProcessPoolExecutor __all__ = [ "get_reusable_executor", "cpu_count", "wait", "as_completed", "Future", "Executor", "ProcessPoolExecutor", "BrokenProcessPool", "CancelledError", "TimeoutError", "FIRST_COMPLETED", "FIRST_EXCEPTION", "ALL_COMPLETED", "wrap_non_picklable_objects", "set_loky_pickler", ] __version__ = "3.4.1" PKaZZZ?�t!!joblib/externals/loky/_base.py############################################################################### # Modification of concurrent.futures.Future # # author: Thomas Moreau and Olivier Grisel # # adapted from concurrent/futures/_base.py (17/02/2017) # * Do not use yield from # * Use old super syntax # # Copyright 2009 Brian Quinlan. All Rights Reserved. # Licensed to PSF under a Contributor Agreement. from concurrent.futures import Future as _BaseFuture from concurrent.futures._base import LOGGER # To make loky._base.Future instances awaitable by concurrent.futures.wait, # derive our custom Future class from _BaseFuture. _invoke_callback is the only # modification made to this class in loky. # TODO investigate why using `concurrent.futures.Future` directly does not # always work in our test suite. class Future(_BaseFuture): def _invoke_callbacks(self): for callback in self._done_callbacks: try: callback(self) except BaseException: LOGGER.exception(f"exception calling callback for {self!r}") PKaZZZ=ʍ�,joblib/externals/loky/cloudpickle_wrapper.pyimport inspect from functools import partial from joblib.externals.cloudpickle import dumps, loads WRAP_CACHE = {} class CloudpickledObjectWrapper: def __init__(self, obj, keep_wrapper=False): self._obj = obj self._keep_wrapper = keep_wrapper def __reduce__(self): _pickled_object = dumps(self._obj) if not self._keep_wrapper: return loads, (_pickled_object,) return _reconstruct_wrapper, (_pickled_object, self._keep_wrapper) def __getattr__(self, attr): # Ensure that the wrapped object can be used seemlessly as the # previous object. if attr not in ["_obj", "_keep_wrapper"]: return getattr(self._obj, attr) return getattr(self, attr) # Make sure the wrapped object conserves the callable property class CallableObjectWrapper(CloudpickledObjectWrapper): def __call__(self, *args, **kwargs): return self._obj(*args, **kwargs) def _wrap_non_picklable_objects(obj, keep_wrapper): if callable(obj): return CallableObjectWrapper(obj, keep_wrapper=keep_wrapper) return CloudpickledObjectWrapper(obj, keep_wrapper=keep_wrapper) def _reconstruct_wrapper(_pickled_object, keep_wrapper): obj = loads(_pickled_object) return _wrap_non_picklable_objects(obj, keep_wrapper) def _wrap_objects_when_needed(obj): # Function to introspect an object and decide if it should be wrapped or # not. need_wrap = "__main__" in getattr(obj, "__module__", "") if isinstance(obj, partial): return partial( _wrap_objects_when_needed(obj.func), *[_wrap_objects_when_needed(a) for a in obj.args], **{ k: _wrap_objects_when_needed(v) for k, v in obj.keywords.items() } ) if callable(obj): # Need wrap if the object is a function defined in a local scope of # another function. func_code = getattr(obj, "__code__", "") need_wrap |= getattr(func_code, "co_flags", 0) & inspect.CO_NESTED # Need wrap if the obj is a lambda expression func_name = getattr(obj, "__name__", "") need_wrap |= "<lambda>" in func_name if not need_wrap: return obj wrapped_obj = WRAP_CACHE.get(obj) if wrapped_obj is None: wrapped_obj = _wrap_non_picklable_objects(obj, keep_wrapper=False) WRAP_CACHE[obj] = wrapped_obj return wrapped_obj def wrap_non_picklable_objects(obj, keep_wrapper=True): """Wrapper for non-picklable object to use cloudpickle to serialize them. Note that this wrapper tends to slow down the serialization process as it is done with cloudpickle which is typically slower compared to pickle. The proper way to solve serialization issues is to avoid defining functions and objects in the main scripts and to implement __reduce__ functions for complex classes. """ # If obj is a class, create a CloudpickledClassWrapper which instantiates # the object internally and wrap it directly in a CloudpickledObjectWrapper if inspect.isclass(obj): class CloudpickledClassWrapper(CloudpickledObjectWrapper): def __init__(self, *args, **kwargs): self._obj = obj(*args, **kwargs) self._keep_wrapper = keep_wrapper CloudpickledClassWrapper.__name__ = obj.__name__ return CloudpickledClassWrapper # If obj is an instance of a class, just wrap it in a regular # CloudpickledObjectWrapper return _wrap_non_picklable_objects(obj, keep_wrapper=keep_wrapper) PKaZZZ�g�$  %joblib/externals/loky/initializers.pyimport warnings def _viztracer_init(init_kwargs): """Initialize viztracer's profiler in worker processes""" from viztracer import VizTracer tracer = VizTracer(**init_kwargs) tracer.register_exit() tracer.start() def _make_viztracer_initializer_and_initargs(): try: import viztracer tracer = viztracer.get_tracer() if tracer is not None and getattr(tracer, "enable", False): # Profiler is active: introspect its configuration to # initialize the workers with the same configuration. return _viztracer_init, (tracer.init_kwargs,) except ImportError: # viztracer is not installed: nothing to do pass except Exception as e: # In case viztracer's API evolve, we do not want to crash loky but # we want to know about it to be able to update loky. warnings.warn(f"Unable to introspect viztracer state: {e}") return None, () class _ChainedInitializer: """Compound worker initializer This is meant to be used in conjunction with _chain_initializers to produce the necessary chained_args list to be passed to __call__. """ def __init__(self, initializers): self._initializers = initializers def __call__(self, *chained_args): for initializer, args in zip(self._initializers, chained_args): initializer(*args) def _chain_initializers(initializer_and_args): """Convenience helper to combine a sequence of initializers. If some initializers are None, they are filtered out. """ filtered_initializers = [] filtered_initargs = [] for initializer, initargs in initializer_and_args: if initializer is not None: filtered_initializers.append(initializer) filtered_initargs.append(initargs) if not filtered_initializers: return None, () elif len(filtered_initializers) == 1: return filtered_initializers[0], filtered_initargs[0] else: return _ChainedInitializer(filtered_initializers), filtered_initargs def _prepare_initializer(initializer, initargs): if initializer is not None and not callable(initializer): raise TypeError( f"initializer must be a callable, got: {initializer!r}" ) # Introspect runtime to determine if we need to propagate the viztracer # profiler information to the workers: return _chain_initializers( [ (initializer, initargs), _make_viztracer_initializer_and_initargs(), ] ) PKaZZZbߊj�j�)joblib/externals/loky/process_executor.py############################################################################### # Re-implementation of the ProcessPoolExecutor more robust to faults # # author: Thomas Moreau and Olivier Grisel # # adapted from concurrent/futures/process_pool_executor.py (17/02/2017) # * Add an extra management thread to detect executor_manager_thread failures, # * Improve the shutdown process to avoid deadlocks, # * Add timeout for workers, # * More robust pickling process. # # Copyright 2009 Brian Quinlan. All Rights Reserved. # Licensed to PSF under a Contributor Agreement. """Implements ProcessPoolExecutor. The follow diagram and text describe the data-flow through the system: |======================= In-process =====================|== Out-of-process ==| +----------+ +----------+ +--------+ +-----------+ +---------+ | | => | Work Ids | | | | Call Q | | Process | | | +----------+ | | +-----------+ | Pool | | | | ... | | | | ... | +---------+ | | | 6 | => | | => | 5, call() | => | | | | | 7 | | | | ... | | | | Process | | ... | | Local | +-----------+ | Process | | Pool | +----------+ | Worker | | #1..n | | Executor | | Thread | | | | | +----------- + | | +-----------+ | | | | <=> | Work Items | <=> | | <= | Result Q | <= | | | | +------------+ | | +-----------+ | | | | | 6: call() | | | | ... | | | | | | future | +--------+ | 4, result | | | | | | ... | | 3, except | | | +----------+ +------------+ +-----------+ +---------+ Executor.submit() called: - creates a uniquely numbered _WorkItem and adds it to the "Work Items" dict - adds the id of the _WorkItem to the "Work Ids" queue Local worker thread: - reads work ids from the "Work Ids" queue and looks up the corresponding WorkItem from the "Work Items" dict: if the work item has been cancelled then it is simply removed from the dict, otherwise it is repackaged as a _CallItem and put in the "Call Q". New _CallItems are put in the "Call Q" until "Call Q" is full. NOTE: the size of the "Call Q" is kept small because calls placed in the "Call Q" can no longer be cancelled with Future.cancel(). - reads _ResultItems from "Result Q", updates the future stored in the "Work Items" dict and deletes the dict entry Process #1..n: - reads _CallItems from "Call Q", executes the calls, and puts the resulting _ResultItems in "Result Q" """ __author__ = "Thomas Moreau (thomas.moreau.2010@gmail.com)" import os import gc import sys import queue import struct import weakref import warnings import itertools import traceback import threading from time import time, sleep import multiprocessing as mp from functools import partial from pickle import PicklingError from concurrent.futures import Executor from concurrent.futures._base import LOGGER from concurrent.futures.process import BrokenProcessPool as _BPPException from multiprocessing.connection import wait from ._base import Future from .backend import get_context from .backend.context import cpu_count, _MAX_WINDOWS_WORKERS from .backend.queues import Queue, SimpleQueue from .backend.reduction import set_loky_pickler, get_loky_pickler_name from .backend.utils import kill_process_tree, get_exitcodes_terminated_worker from .initializers import _prepare_initializer # Mechanism to prevent infinite process spawning. When a worker of a # ProcessPoolExecutor nested in MAX_DEPTH Executor tries to create a new # Executor, a LokyRecursionError is raised MAX_DEPTH = int(os.environ.get("LOKY_MAX_DEPTH", 10)) _CURRENT_DEPTH = 0 # Minimum time interval between two consecutive memory leak protection checks. _MEMORY_LEAK_CHECK_DELAY = 1.0 # Number of bytes of memory usage allowed over the reference process size. _MAX_MEMORY_LEAK_SIZE = int(3e8) try: from psutil import Process _USE_PSUTIL = True def _get_memory_usage(pid, force_gc=False): if force_gc: gc.collect() mem_size = Process(pid).memory_info().rss mp.util.debug(f"psutil return memory size: {mem_size}") return mem_size except ImportError: _USE_PSUTIL = False class _ThreadWakeup: def __init__(self): self._closed = False self._reader, self._writer = mp.Pipe(duplex=False) def close(self): if not self._closed: self._closed = True self._writer.close() self._reader.close() def wakeup(self): if not self._closed: self._writer.send_bytes(b"") def clear(self): if not self._closed: while self._reader.poll(): self._reader.recv_bytes() class _ExecutorFlags: """necessary references to maintain executor states without preventing gc It permits to keep the information needed by executor_manager_thread and crash_detection_thread to maintain the pool without preventing the garbage collection of unreferenced executors. """ def __init__(self, shutdown_lock): self.shutdown = False self.broken = None self.kill_workers = False self.shutdown_lock = shutdown_lock def flag_as_shutting_down(self, kill_workers=None): with self.shutdown_lock: self.shutdown = True if kill_workers is not None: self.kill_workers = kill_workers def flag_as_broken(self, broken): with self.shutdown_lock: self.shutdown = True self.broken = broken # Prior to 3.9, executor_manager_thread is created as daemon thread. This means # that it is not joined automatically when the interpreter is shutting down. # To work around this problem, an exit handler is installed to tell the # thread to exit when the interpreter is shutting down and then waits until # it finishes. The thread needs to be daemonized because the atexit hooks are # called after all non daemonized threads are joined. # # Starting 3.9, there exists a specific atexit hook to be called before joining # the threads so the executor_manager_thread does not need to be daemonized # anymore. # # The atexit hooks are registered when starting the first ProcessPoolExecutor # to avoid import having an effect on the interpreter. _global_shutdown = False _global_shutdown_lock = threading.Lock() _threads_wakeups = weakref.WeakKeyDictionary() def _python_exit(): global _global_shutdown _global_shutdown = True # Materialize the list of items to avoid error due to iterating over # changing size dictionary. items = list(_threads_wakeups.items()) if len(items) > 0: mp.util.debug( "Interpreter shutting down. Waking up {len(items)}" f"executor_manager_thread:\n{items}" ) # Wake up the executor_manager_thread's so they can detect the interpreter # is shutting down and exit. for _, (shutdown_lock, thread_wakeup) in items: with shutdown_lock: thread_wakeup.wakeup() # Collect the executor_manager_thread's to make sure we exit cleanly. for thread, _ in items: # This locks is to prevent situations where an executor is gc'ed in one # thread while the atexit finalizer is running in another thread. This # can happen when joblib is used in pypy for instance. with _global_shutdown_lock: thread.join() # With the fork context, _thread_wakeups is propagated to children. # Clear it after fork to avoid some situation that can cause some # freeze when joining the workers. mp.util.register_after_fork(_threads_wakeups, lambda obj: obj.clear()) # Module variable to register the at_exit call process_pool_executor_at_exit = None # Controls how many more calls than processes will be queued in the call queue. # A smaller number will mean that processes spend more time idle waiting for # work while a larger number will make Future.cancel() succeed less frequently # (Futures in the call queue cannot be cancelled). EXTRA_QUEUED_CALLS = 1 class _RemoteTraceback(Exception): """Embed stringification of remote traceback in local traceback""" def __init__(self, tb=None): self.tb = f'\n"""\n{tb}"""' def __str__(self): return self.tb # Do not inherit from BaseException to mirror # concurrent.futures.process._ExceptionWithTraceback class _ExceptionWithTraceback: def __init__(self, exc): tb = getattr(exc, "__traceback__", None) if tb is None: _, _, tb = sys.exc_info() tb = traceback.format_exception(type(exc), exc, tb) tb = "".join(tb) self.exc = exc self.tb = tb def __reduce__(self): return _rebuild_exc, (self.exc, self.tb) def _rebuild_exc(exc, tb): exc.__cause__ = _RemoteTraceback(tb) return exc class _WorkItem: __slots__ = ["future", "fn", "args", "kwargs"] def __init__(self, future, fn, args, kwargs): self.future = future self.fn = fn self.args = args self.kwargs = kwargs class _ResultItem: def __init__(self, work_id, exception=None, result=None): self.work_id = work_id self.exception = exception self.result = result class _CallItem: def __init__(self, work_id, fn, args, kwargs): self.work_id = work_id self.fn = fn self.args = args self.kwargs = kwargs # Store the current loky_pickler so it is correctly set in the worker self.loky_pickler = get_loky_pickler_name() def __call__(self): set_loky_pickler(self.loky_pickler) return self.fn(*self.args, **self.kwargs) def __repr__(self): return ( f"CallItem({self.work_id}, {self.fn}, {self.args}, {self.kwargs})" ) class _SafeQueue(Queue): """Safe Queue set exception to the future object linked to a job""" def __init__( self, max_size=0, ctx=None, pending_work_items=None, running_work_items=None, thread_wakeup=None, reducers=None, ): self.thread_wakeup = thread_wakeup self.pending_work_items = pending_work_items self.running_work_items = running_work_items super().__init__(max_size, reducers=reducers, ctx=ctx) def _on_queue_feeder_error(self, e, obj): if isinstance(obj, _CallItem): # format traceback only works on python3 if isinstance(e, struct.error): raised_error = RuntimeError( "The task could not be sent to the workers as it is too " "large for `send_bytes`." ) else: raised_error = PicklingError( "Could not pickle the task to send it to the workers." ) tb = traceback.format_exception( type(e), e, getattr(e, "__traceback__", None) ) raised_error.__cause__ = _RemoteTraceback("".join(tb)) work_item = self.pending_work_items.pop(obj.work_id, None) self.running_work_items.remove(obj.work_id) # work_item can be None if another process terminated. In this # case, the executor_manager_thread fails all work_items with # BrokenProcessPool if work_item is not None: work_item.future.set_exception(raised_error) del work_item self.thread_wakeup.wakeup() else: super()._on_queue_feeder_error(e, obj) def _get_chunks(chunksize, *iterables): """Iterates over zip()ed iterables in chunks.""" it = zip(*iterables) while True: chunk = tuple(itertools.islice(it, chunksize)) if not chunk: return yield chunk def _process_chunk(fn, chunk): """Processes a chunk of an iterable passed to map. Runs the function passed to map() on a chunk of the iterable passed to map. This function is run in a separate process. """ return [fn(*args) for args in chunk] def _sendback_result(result_queue, work_id, result=None, exception=None): """Safely send back the given result or exception""" try: result_queue.put( _ResultItem(work_id, result=result, exception=exception) ) except BaseException as e: exc = _ExceptionWithTraceback(e) result_queue.put(_ResultItem(work_id, exception=exc)) def _process_worker( call_queue, result_queue, initializer, initargs, processes_management_lock, timeout, worker_exit_lock, current_depth, ): """Evaluates calls from call_queue and places the results in result_queue. This worker is run in a separate process. Args: call_queue: A ctx.Queue of _CallItems that will be read and evaluated by the worker. result_queue: A ctx.Queue of _ResultItems that will written to by the worker. initializer: A callable initializer, or None initargs: A tuple of args for the initializer processes_management_lock: A ctx.Lock avoiding worker timeout while some workers are being spawned. timeout: maximum time to wait for a new item in the call_queue. If that time is expired, the worker will shutdown. worker_exit_lock: Lock to avoid flagging the executor as broken on workers timeout. current_depth: Nested parallelism level, to avoid infinite spawning. """ if initializer is not None: try: initializer(*initargs) except BaseException: LOGGER.critical("Exception in initializer:", exc_info=True) # The parent will notice that the process stopped and # mark the pool broken return # set the global _CURRENT_DEPTH mechanism to limit recursive call global _CURRENT_DEPTH _CURRENT_DEPTH = current_depth _process_reference_size = None _last_memory_leak_check = None pid = os.getpid() mp.util.debug(f"Worker started with timeout={timeout}") while True: try: call_item = call_queue.get(block=True, timeout=timeout) if call_item is None: mp.util.info("Shutting down worker on sentinel") except queue.Empty: mp.util.info(f"Shutting down worker after timeout {timeout:0.3f}s") if processes_management_lock.acquire(block=False): processes_management_lock.release() call_item = None else: mp.util.info("Could not acquire processes_management_lock") continue except BaseException: previous_tb = traceback.format_exc() try: result_queue.put(_RemoteTraceback(previous_tb)) except BaseException: # If we cannot format correctly the exception, at least print # the traceback. print(previous_tb) mp.util.debug("Exiting with code 1") sys.exit(1) if call_item is None: # Notify queue management thread about worker shutdown result_queue.put(pid) is_clean = worker_exit_lock.acquire(True, timeout=30) # Early notify any loky executor running in this worker process # (nested parallelism) that this process is about to shutdown to # avoid a deadlock waiting undifinitely for the worker to finish. _python_exit() if is_clean: mp.util.debug("Exited cleanly") else: mp.util.info("Main process did not release worker_exit") return try: r = call_item() except BaseException as e: exc = _ExceptionWithTraceback(e) result_queue.put(_ResultItem(call_item.work_id, exception=exc)) else: _sendback_result(result_queue, call_item.work_id, result=r) del r # Free the resource as soon as possible, to avoid holding onto # open files or shared memory that is not needed anymore del call_item if _USE_PSUTIL: if _process_reference_size is None: # Make reference measurement after the first call _process_reference_size = _get_memory_usage(pid, force_gc=True) _last_memory_leak_check = time() continue if time() - _last_memory_leak_check > _MEMORY_LEAK_CHECK_DELAY: mem_usage = _get_memory_usage(pid) _last_memory_leak_check = time() if mem_usage - _process_reference_size < _MAX_MEMORY_LEAK_SIZE: # Memory usage stays within bounds: everything is fine. continue # Check again memory usage; this time take the measurement # after a forced garbage collection to break any reference # cycles. mem_usage = _get_memory_usage(pid, force_gc=True) _last_memory_leak_check = time() if mem_usage - _process_reference_size < _MAX_MEMORY_LEAK_SIZE: # The GC managed to free the memory: everything is fine. continue # The process is leaking memory: let the master process # know that we need to start a new worker. mp.util.info("Memory leak detected: shutting down worker") result_queue.put(pid) with worker_exit_lock: mp.util.debug("Exit due to memory leak") return else: # if psutil is not installed, trigger gc.collect events # regularly to limit potential memory leaks due to reference cycles if _last_memory_leak_check is None or ( time() - _last_memory_leak_check > _MEMORY_LEAK_CHECK_DELAY ): gc.collect() _last_memory_leak_check = time() class _ExecutorManagerThread(threading.Thread): """Manages the communication between this process and the worker processes. The manager is run in a local thread. Args: executor: A reference to the ProcessPoolExecutor that owns this thread. A weakref will be own by the manager as well as references to internal objects used to introspect the state of the executor. """ def __init__(self, executor): # Store references to necessary internals of the executor. # A _ThreadWakeup to allow waking up the executor_manager_thread from # the main Thread and avoid deadlocks caused by permanently # locked queues. self.thread_wakeup = executor._executor_manager_thread_wakeup self.shutdown_lock = executor._shutdown_lock # A weakref.ref to the ProcessPoolExecutor that owns this thread. Used # to determine if the ProcessPoolExecutor has been garbage collected # and that the manager can exit. # When the executor gets garbage collected, the weakref callback # will wake up the queue management thread so that it can terminate # if there is no pending work item. def weakref_cb( _, thread_wakeup=self.thread_wakeup, shutdown_lock=self.shutdown_lock, ): if mp is not None: # At this point, the multiprocessing module can already be # garbage collected. We only log debug info when still # possible. mp.util.debug( "Executor collected: triggering callback for" " QueueManager wakeup" ) with shutdown_lock: thread_wakeup.wakeup() self.executor_reference = weakref.ref(executor, weakref_cb) # The flags of the executor self.executor_flags = executor._flags # A list of the ctx.Process instances used as workers. self.processes = executor._processes # A ctx.Queue that will be filled with _CallItems derived from # _WorkItems for processing by the process workers. self.call_queue = executor._call_queue # A ctx.SimpleQueue of _ResultItems generated by the process workers. self.result_queue = executor._result_queue # A queue.Queue of work ids e.g. Queue([5, 6, ...]). self.work_ids_queue = executor._work_ids # A dict mapping work ids to _WorkItems e.g. # {5: <_WorkItem...>, 6: <_WorkItem...>, ...} self.pending_work_items = executor._pending_work_items # A list of the work_ids that are currently running self.running_work_items = executor._running_work_items # A lock to avoid concurrent shutdown of workers on timeout and spawn # of new processes or shut down self.processes_management_lock = executor._processes_management_lock super().__init__(name="ExecutorManagerThread") if sys.version_info < (3, 9): self.daemon = True def run(self): # Main loop for the executor manager thread. while True: self.add_call_item_to_queue() result_item, is_broken, bpe = self.wait_result_broken_or_wakeup() if is_broken: self.terminate_broken(bpe) return if result_item is not None: self.process_result_item(result_item) # Delete reference to result_item to avoid keeping references # while waiting on new results. del result_item if self.is_shutting_down(): self.flag_executor_shutting_down() # Since no new work items can be added, it is safe to shutdown # this thread if there are no pending work items. if not self.pending_work_items: self.join_executor_internals() return def add_call_item_to_queue(self): # Fills call_queue with _WorkItems from pending_work_items. # This function never blocks. while True: if self.call_queue.full(): return try: work_id = self.work_ids_queue.get(block=False) except queue.Empty: return else: work_item = self.pending_work_items[work_id] if work_item.future.set_running_or_notify_cancel(): self.running_work_items += [work_id] self.call_queue.put( _CallItem( work_id, work_item.fn, work_item.args, work_item.kwargs, ), block=True, ) else: del self.pending_work_items[work_id] continue def wait_result_broken_or_wakeup(self): # Wait for a result to be ready in the result_queue while checking # that all worker processes are still running, or for a wake up # signal send. The wake up signals come either from new tasks being # submitted, from the executor being shutdown/gc-ed, or from the # shutdown of the python interpreter. result_reader = self.result_queue._reader wakeup_reader = self.thread_wakeup._reader readers = [result_reader, wakeup_reader] worker_sentinels = [p.sentinel for p in list(self.processes.values())] ready = wait(readers + worker_sentinels) bpe = None is_broken = True result_item = None if result_reader in ready: try: result_item = result_reader.recv() if isinstance(result_item, _RemoteTraceback): bpe = BrokenProcessPool( "A task has failed to un-serialize. Please ensure that" " the arguments of the function are all picklable." ) bpe.__cause__ = result_item else: is_broken = False except BaseException as e: bpe = BrokenProcessPool( "A result has failed to un-serialize. Please ensure that " "the objects returned by the function are always " "picklable." ) tb = traceback.format_exception( type(e), e, getattr(e, "__traceback__", None) ) bpe.__cause__ = _RemoteTraceback("".join(tb)) elif wakeup_reader in ready: # This is simply a wake-up event that might either trigger putting # more tasks in the queue or trigger the clean up of resources. is_broken = False else: # A worker has terminated and we don't know why, set the state of # the executor as broken exit_codes = "" if sys.platform != "win32": # In Windows, introspecting terminated workers exitcodes seems # unstable, therefore they are not appended in the exception # message. exit_codes = ( "\nThe exit codes of the workers are " f"{get_exitcodes_terminated_worker(self.processes)}" ) mp.util.debug( "A worker unexpectedly terminated. Workers that " "might have caused the breakage: " + str( { p.name: p.exitcode for p in list(self.processes.values()) if p is not None and p.sentinel in ready } ) ) bpe = TerminatedWorkerError( "A worker process managed by the executor was unexpectedly " "terminated. This could be caused by a segmentation fault " "while calling the function or by an excessive memory usage " "causing the Operating System to kill the worker.\n" f"{exit_codes}" ) self.thread_wakeup.clear() return result_item, is_broken, bpe def process_result_item(self, result_item): # Process the received a result_item. This can be either the PID of a # worker that exited gracefully or a _ResultItem if isinstance(result_item, int): # Clean shutdown of a worker using its PID, either on request # by the executor.shutdown method or by the timeout of the worker # itself: we should not mark the executor as broken. with self.processes_management_lock: p = self.processes.pop(result_item, None) # p can be None if the executor is concurrently shutting down. if p is not None: p._worker_exit_lock.release() mp.util.debug( f"joining {p.name} when processing {p.pid} as result_item" ) p.join() del p # Make sure the executor have the right number of worker, even if a # worker timeout while some jobs were submitted. If some work is # pending or there is less processes than running items, we need to # start a new Process and raise a warning. n_pending = len(self.pending_work_items) n_running = len(self.running_work_items) if n_pending - n_running > 0 or n_running > len(self.processes): executor = self.executor_reference() if ( executor is not None and len(self.processes) < executor._max_workers ): warnings.warn( "A worker stopped while some jobs were given to the " "executor. This can be caused by a too short worker " "timeout or by a memory leak.", UserWarning, ) with executor._processes_management_lock: executor._adjust_process_count() executor = None else: # Received a _ResultItem so mark the future as completed. work_item = self.pending_work_items.pop(result_item.work_id, None) # work_item can be None if another process terminated (see above) if work_item is not None: if result_item.exception: work_item.future.set_exception(result_item.exception) else: work_item.future.set_result(result_item.result) self.running_work_items.remove(result_item.work_id) def is_shutting_down(self): # Check whether we should start shutting down the executor. executor = self.executor_reference() # No more work items can be added if: # - The interpreter is shutting down OR # - The executor that owns this thread is not broken AND # * The executor that owns this worker has been collected OR # * The executor that owns this worker has been shutdown. # If the executor is broken, it should be detected in the next loop. return _global_shutdown or ( (executor is None or self.executor_flags.shutdown) and not self.executor_flags.broken ) def terminate_broken(self, bpe): # Terminate the executor because it is in a broken state. The bpe # argument can be used to display more information on the error that # lead the executor into becoming broken. # Mark the process pool broken so that submits fail right now. self.executor_flags.flag_as_broken(bpe) # Mark pending tasks as failed. for work_item in self.pending_work_items.values(): work_item.future.set_exception(bpe) # Delete references to object. See issue16284 del work_item self.pending_work_items.clear() # Terminate remaining workers forcibly: the queues or their # locks may be in a dirty state and block forever. self.kill_workers(reason="broken executor") # clean up resources self.join_executor_internals() def flag_executor_shutting_down(self): # Flag the executor as shutting down and cancel remaining tasks if # requested as early as possible if it is not gc-ed yet. self.executor_flags.flag_as_shutting_down() # Cancel pending work items if requested. if self.executor_flags.kill_workers: while self.pending_work_items: _, work_item = self.pending_work_items.popitem() work_item.future.set_exception( ShutdownExecutorError( "The Executor was shutdown with `kill_workers=True` " "before this job could complete." ) ) del work_item # Kill the remaining worker forcibly to no waste time joining them self.kill_workers(reason="executor shutting down") def kill_workers(self, reason=""): # Terminate the remaining workers using SIGKILL. This function also # terminates descendant workers of the children in case there is some # nested parallelism. while self.processes: _, p = self.processes.popitem() mp.util.debug(f"terminate process {p.name}, reason: {reason}") try: kill_process_tree(p) except ProcessLookupError: # pragma: no cover pass def shutdown_workers(self): # shutdown all workers in self.processes # Create a list to avoid RuntimeError due to concurrent modification of # processes. nb_children_alive is thus an upper bound. Also release the # processes' _worker_exit_lock to accelerate the shutdown procedure, as # there is no need for hand-shake here. with self.processes_management_lock: n_children_to_stop = 0 for p in list(self.processes.values()): mp.util.debug(f"releasing worker exit lock on {p.name}") p._worker_exit_lock.release() n_children_to_stop += 1 mp.util.debug(f"found {n_children_to_stop} processes to stop") # Send the right number of sentinels, to make sure all children are # properly terminated. Do it with a mechanism that avoid hanging on # Full queue when all workers have already been shutdown. n_sentinels_sent = 0 cooldown_time = 0.001 while ( n_sentinels_sent < n_children_to_stop and self.get_n_children_alive() > 0 ): for _ in range(n_children_to_stop - n_sentinels_sent): try: self.call_queue.put_nowait(None) n_sentinels_sent += 1 except queue.Full as e: if cooldown_time > 5.0: mp.util.info( "failed to send all sentinels and exit with error." f"\ncall_queue size={self.call_queue._maxsize}; " f" full is {self.call_queue.full()}; " ) raise e mp.util.info( "full call_queue prevented to send all sentinels at " "once, waiting..." ) sleep(cooldown_time) cooldown_time *= 1.2 break mp.util.debug(f"sent {n_sentinels_sent} sentinels to the call queue") def join_executor_internals(self): self.shutdown_workers() # Release the queue's resources as soon as possible. Flag the feeder # thread for clean exit to avoid having the crash detection thread flag # the Executor as broken during the shutdown. This is safe as either: # * We don't need to communicate with the workers anymore # * There is nothing left in the Queue buffer except None sentinels mp.util.debug("closing call_queue") self.call_queue.close() self.call_queue.join_thread() # Closing result_queue mp.util.debug("closing result_queue") self.result_queue.close() mp.util.debug("closing thread_wakeup") with self.shutdown_lock: self.thread_wakeup.close() # If .join() is not called on the created processes then # some ctx.Queue methods may deadlock on macOS. with self.processes_management_lock: mp.util.debug(f"joining {len(self.processes)} processes") n_joined_processes = 0 while True: try: pid, p = self.processes.popitem() mp.util.debug(f"joining process {p.name} with pid {pid}") p.join() n_joined_processes += 1 except KeyError: break mp.util.debug( "executor management thread clean shutdown of " f"{n_joined_processes} workers" ) def get_n_children_alive(self): # This is an upper bound on the number of children alive. with self.processes_management_lock: return sum(p.is_alive() for p in list(self.processes.values())) _system_limits_checked = False _system_limited = None def _check_system_limits(): global _system_limits_checked, _system_limited if _system_limits_checked and _system_limited: raise NotImplementedError(_system_limited) _system_limits_checked = True try: nsems_max = os.sysconf("SC_SEM_NSEMS_MAX") except (AttributeError, ValueError): # sysconf not available or setting not available return if nsems_max == -1: # undetermined limit, assume that limit is determined # by available memory only return if nsems_max >= 256: # minimum number of semaphores available # according to POSIX return _system_limited = ( f"system provides too few semaphores ({nsems_max} available, " "256 necessary)" ) raise NotImplementedError(_system_limited) def _chain_from_iterable_of_lists(iterable): """ Specialized implementation of itertools.chain.from_iterable. Each item in *iterable* should be a list. This function is careful not to keep references to yielded objects. """ for element in iterable: element.reverse() while element: yield element.pop() def _check_max_depth(context): # Limit the maxmal recursion level global _CURRENT_DEPTH if context.get_start_method() == "fork" and _CURRENT_DEPTH > 0: raise LokyRecursionError( "Could not spawn extra nested processes at depth superior to " "MAX_DEPTH=1. It is not possible to increase this limit when " "using the 'fork' start method." ) if 0 < MAX_DEPTH and _CURRENT_DEPTH + 1 > MAX_DEPTH: raise LokyRecursionError( "Could not spawn extra nested processes at depth superior to " f"MAX_DEPTH={MAX_DEPTH}. If this is intendend, you can change " "this limit with the LOKY_MAX_DEPTH environment variable." ) class LokyRecursionError(RuntimeError): """A process tries to spawn too many levels of nested processes.""" class BrokenProcessPool(_BPPException): """ Raised when the executor is broken while a future was in the running state. The cause can an error raised when unpickling the task in the worker process or when unpickling the result value in the parent process. It can also be caused by a worker process being terminated unexpectedly. """ class TerminatedWorkerError(BrokenProcessPool): """ Raised when a process in a ProcessPoolExecutor terminated abruptly while a future was in the running state. """ # Alias for backward compat (for code written for loky 1.1.4 and earlier). Do # not use in new code. BrokenExecutor = BrokenProcessPool class ShutdownExecutorError(RuntimeError): """ Raised when a ProcessPoolExecutor is shutdown while a future was in the running or pending state. """ class ProcessPoolExecutor(Executor): _at_exit = None def __init__( self, max_workers=None, job_reducers=None, result_reducers=None, timeout=None, context=None, initializer=None, initargs=(), env=None, ): """Initializes a new ProcessPoolExecutor instance. Args: max_workers: int, optional (default: cpu_count()) The maximum number of processes that can be used to execute the given calls. If None or not given then as many worker processes will be created as the number of CPUs the current process can use. job_reducers, result_reducers: dict(type: reducer_func) Custom reducer for pickling the jobs and the results from the Executor. If only `job_reducers` is provided, `result_reducer` will use the same reducers timeout: int, optional (default: None) Idle workers exit after timeout seconds. If a new job is submitted after the timeout, the executor will start enough new Python processes to make sure the pool of workers is full. context: A multiprocessing context to launch the workers. This object should provide SimpleQueue, Queue and Process. initializer: An callable used to initialize worker processes. initargs: A tuple of arguments to pass to the initializer. env: A dict of environment variable to overwrite in the child process. The environment variables are set before any module is loaded. Note that this only works with the loky context. """ _check_system_limits() if max_workers is None: self._max_workers = cpu_count() else: if max_workers <= 0: raise ValueError("max_workers must be greater than 0") self._max_workers = max_workers if ( sys.platform == "win32" and self._max_workers > _MAX_WINDOWS_WORKERS ): warnings.warn( f"On Windows, max_workers cannot exceed {_MAX_WINDOWS_WORKERS} " "due to limitations of the operating system." ) self._max_workers = _MAX_WINDOWS_WORKERS if context is None: context = get_context() self._context = context self._env = env self._initializer, self._initargs = _prepare_initializer( initializer, initargs ) _check_max_depth(self._context) if result_reducers is None: result_reducers = job_reducers # Timeout self._timeout = timeout # Management thread self._executor_manager_thread = None # Map of pids to processes self._processes = {} # Internal variables of the ProcessPoolExecutor self._processes = {} self._queue_count = 0 self._pending_work_items = {} self._running_work_items = [] self._work_ids = queue.Queue() self._processes_management_lock = self._context.Lock() self._executor_manager_thread = None self._shutdown_lock = threading.Lock() # _ThreadWakeup is a communication channel used to interrupt the wait # of the main loop of executor_manager_thread from another thread (e.g. # when calling executor.submit or executor.shutdown). We do not use the # _result_queue to send wakeup signals to the executor_manager_thread # as it could result in a deadlock if a worker process dies with the # _result_queue write lock still acquired. # # _shutdown_lock must be locked to access _ThreadWakeup.wakeup. self._executor_manager_thread_wakeup = _ThreadWakeup() # Flag to hold the state of the Executor. This permits to introspect # the Executor state even once it has been garbage collected. self._flags = _ExecutorFlags(self._shutdown_lock) # Finally setup the queues for interprocess communication self._setup_queues(job_reducers, result_reducers) mp.util.debug("ProcessPoolExecutor is setup") def _setup_queues(self, job_reducers, result_reducers, queue_size=None): # Make the call queue slightly larger than the number of processes to # prevent the worker processes from idling. But don't make it too big # because futures in the call queue cannot be cancelled. if queue_size is None: queue_size = 2 * self._max_workers + EXTRA_QUEUED_CALLS self._call_queue = _SafeQueue( max_size=queue_size, pending_work_items=self._pending_work_items, running_work_items=self._running_work_items, thread_wakeup=self._executor_manager_thread_wakeup, reducers=job_reducers, ctx=self._context, ) # Killed worker processes can produce spurious "broken pipe" # tracebacks in the queue's own worker thread. But we detect killed # processes anyway, so silence the tracebacks. self._call_queue._ignore_epipe = True self._result_queue = SimpleQueue( reducers=result_reducers, ctx=self._context ) def _start_executor_manager_thread(self): if self._executor_manager_thread is None: mp.util.debug("_start_executor_manager_thread called") # Start the processes so that their sentinels are known. self._executor_manager_thread = _ExecutorManagerThread(self) self._executor_manager_thread.start() # register this executor in a mechanism that ensures it will wakeup # when the interpreter is exiting. _threads_wakeups[self._executor_manager_thread] = ( self._shutdown_lock, self._executor_manager_thread_wakeup, ) global process_pool_executor_at_exit if process_pool_executor_at_exit is None: # Ensure that the _python_exit function will be called before # the multiprocessing.Queue._close finalizers which have an # exitpriority of 10. if sys.version_info < (3, 9): process_pool_executor_at_exit = mp.util.Finalize( None, _python_exit, exitpriority=20 ) else: process_pool_executor_at_exit = threading._register_atexit( _python_exit ) def _adjust_process_count(self): while len(self._processes) < self._max_workers: worker_exit_lock = self._context.BoundedSemaphore(1) args = ( self._call_queue, self._result_queue, self._initializer, self._initargs, self._processes_management_lock, self._timeout, worker_exit_lock, _CURRENT_DEPTH + 1, ) worker_exit_lock.acquire() try: # Try to spawn the process with some environment variable to # overwrite but it only works with the loky context for now. p = self._context.Process( target=_process_worker, args=args, env=self._env ) except TypeError: p = self._context.Process(target=_process_worker, args=args) p._worker_exit_lock = worker_exit_lock p.start() self._processes[p.pid] = p mp.util.debug( f"Adjusted process count to {self._max_workers}: " f"{[(p.name, pid) for pid, p in self._processes.items()]}" ) def _ensure_executor_running(self): """ensures all workers and management thread are running""" with self._processes_management_lock: if len(self._processes) != self._max_workers: self._adjust_process_count() self._start_executor_manager_thread() def submit(self, fn, *args, **kwargs): with self._flags.shutdown_lock: if self._flags.broken is not None: raise self._flags.broken if self._flags.shutdown: raise ShutdownExecutorError( "cannot schedule new futures after shutdown" ) # Cannot submit a new calls once the interpreter is shutting down. # This check avoids spawning new processes at exit. if _global_shutdown: raise RuntimeError( "cannot schedule new futures after " "interpreter shutdown" ) f = Future() w = _WorkItem(f, fn, args, kwargs) self._pending_work_items[self._queue_count] = w self._work_ids.put(self._queue_count) self._queue_count += 1 # Wake up queue management thread self._executor_manager_thread_wakeup.wakeup() self._ensure_executor_running() return f submit.__doc__ = Executor.submit.__doc__ def map(self, fn, *iterables, **kwargs): """Returns an iterator equivalent to map(fn, iter). Args: fn: A callable that will take as many arguments as there are passed iterables. timeout: The maximum number of seconds to wait. If None, then there is no limit on the wait time. chunksize: If greater than one, the iterables will be chopped into chunks of size chunksize and submitted to the process pool. If set to one, the items in the list will be sent one at a time. Returns: An iterator equivalent to: map(func, *iterables) but the calls may be evaluated out-of-order. Raises: TimeoutError: If the entire result iterator could not be generated before the given timeout. Exception: If fn(*args) raises for any values. """ timeout = kwargs.get("timeout", None) chunksize = kwargs.get("chunksize", 1) if chunksize < 1: raise ValueError("chunksize must be >= 1.") results = super().map( partial(_process_chunk, fn), _get_chunks(chunksize, *iterables), timeout=timeout, ) return _chain_from_iterable_of_lists(results) def shutdown(self, wait=True, kill_workers=False): mp.util.debug(f"shutting down executor {self}") self._flags.flag_as_shutting_down(kill_workers) executor_manager_thread = self._executor_manager_thread executor_manager_thread_wakeup = self._executor_manager_thread_wakeup if executor_manager_thread_wakeup is not None: # Wake up queue management thread with self._shutdown_lock: self._executor_manager_thread_wakeup.wakeup() if executor_manager_thread is not None and wait: # This locks avoids concurrent join if the interpreter # is shutting down. with _global_shutdown_lock: executor_manager_thread.join() _threads_wakeups.pop(executor_manager_thread, None) # To reduce the risk of opening too many files, remove references to # objects that use file descriptors. self._executor_manager_thread = None self._executor_manager_thread_wakeup = None self._call_queue = None self._result_queue = None self._processes_management_lock = None shutdown.__doc__ = Executor.shutdown.__doc__ PKaZZZHe�eA(A(*joblib/externals/loky/reusable_executor.py############################################################################### # Reusable ProcessPoolExecutor # # author: Thomas Moreau and Olivier Grisel # import time import warnings import threading import multiprocessing as mp from .process_executor import ProcessPoolExecutor, EXTRA_QUEUED_CALLS from .backend.context import cpu_count from .backend import get_context __all__ = ["get_reusable_executor"] # Singleton executor and id management _executor_lock = threading.RLock() _next_executor_id = 0 _executor = None _executor_kwargs = None def _get_next_executor_id(): """Ensure that each successive executor instance has a unique, monotonic id. The purpose of this monotonic id is to help debug and test automated instance creation. """ global _next_executor_id with _executor_lock: executor_id = _next_executor_id _next_executor_id += 1 return executor_id def get_reusable_executor( max_workers=None, context=None, timeout=10, kill_workers=False, reuse="auto", job_reducers=None, result_reducers=None, initializer=None, initargs=(), env=None, ): """Return the current ReusableExectutor instance. Start a new instance if it has not been started already or if the previous instance was left in a broken state. If the previous instance does not have the requested number of workers, the executor is dynamically resized to adjust the number of workers prior to returning. Reusing a singleton instance spares the overhead of starting new worker processes and importing common python packages each time. ``max_workers`` controls the maximum number of tasks that can be running in parallel in worker processes. By default this is set to the number of CPUs on the host. Setting ``timeout`` (in seconds) makes idle workers automatically shutdown so as to release system resources. New workers are respawn upon submission of new tasks so that ``max_workers`` are available to accept the newly submitted tasks. Setting ``timeout`` to around 100 times the time required to spawn new processes and import packages in them (on the order of 100ms) ensures that the overhead of spawning workers is negligible. Setting ``kill_workers=True`` makes it possible to forcibly interrupt previously spawned jobs to get a new instance of the reusable executor with new constructor argument values. The ``job_reducers`` and ``result_reducers`` are used to customize the pickling of tasks and results send to the executor. When provided, the ``initializer`` is run first in newly spawned processes with argument ``initargs``. The environment variable in the child process are a copy of the values in the main process. One can provide a dict ``{ENV: VAL}`` where ``ENV`` and ``VAL`` are string literals to overwrite the environment variable ``ENV`` in the child processes to value ``VAL``. The environment variables are set in the children before any module is loaded. This only works with the ``loky`` context. """ _executor, _ = _ReusablePoolExecutor.get_reusable_executor( max_workers=max_workers, context=context, timeout=timeout, kill_workers=kill_workers, reuse=reuse, job_reducers=job_reducers, result_reducers=result_reducers, initializer=initializer, initargs=initargs, env=env, ) return _executor class _ReusablePoolExecutor(ProcessPoolExecutor): def __init__( self, submit_resize_lock, max_workers=None, context=None, timeout=None, executor_id=0, job_reducers=None, result_reducers=None, initializer=None, initargs=(), env=None, ): super().__init__( max_workers=max_workers, context=context, timeout=timeout, job_reducers=job_reducers, result_reducers=result_reducers, initializer=initializer, initargs=initargs, env=env, ) self.executor_id = executor_id self._submit_resize_lock = submit_resize_lock @classmethod def get_reusable_executor( cls, max_workers=None, context=None, timeout=10, kill_workers=False, reuse="auto", job_reducers=None, result_reducers=None, initializer=None, initargs=(), env=None, ): with _executor_lock: global _executor, _executor_kwargs executor = _executor if max_workers is None: if reuse is True and executor is not None: max_workers = executor._max_workers else: max_workers = cpu_count() elif max_workers <= 0: raise ValueError( f"max_workers must be greater than 0, got {max_workers}." ) if isinstance(context, str): context = get_context(context) if context is not None and context.get_start_method() == "fork": raise ValueError( "Cannot use reusable executor with the 'fork' context" ) kwargs = dict( context=context, timeout=timeout, job_reducers=job_reducers, result_reducers=result_reducers, initializer=initializer, initargs=initargs, env=env, ) if executor is None: is_reused = False mp.util.debug( f"Create a executor with max_workers={max_workers}." ) executor_id = _get_next_executor_id() _executor_kwargs = kwargs _executor = executor = cls( _executor_lock, max_workers=max_workers, executor_id=executor_id, **kwargs, ) else: if reuse == "auto": reuse = kwargs == _executor_kwargs if ( executor._flags.broken or executor._flags.shutdown or not reuse ): if executor._flags.broken: reason = "broken" elif executor._flags.shutdown: reason = "shutdown" else: reason = "arguments have changed" mp.util.debug( "Creating a new executor with max_workers=" f"{max_workers} as the previous instance cannot be " f"reused ({reason})." ) executor.shutdown(wait=True, kill_workers=kill_workers) _executor = executor = _executor_kwargs = None # Recursive call to build a new instance return cls.get_reusable_executor( max_workers=max_workers, **kwargs ) else: mp.util.debug( "Reusing existing executor with " f"max_workers={executor._max_workers}." ) is_reused = True executor._resize(max_workers) return executor, is_reused def submit(self, fn, *args, **kwargs): with self._submit_resize_lock: return super().submit(fn, *args, **kwargs) def _resize(self, max_workers): with self._submit_resize_lock: if max_workers is None: raise ValueError("Trying to resize with max_workers=None") elif max_workers == self._max_workers: return if self._executor_manager_thread is None: # If the executor_manager_thread has not been started # then no processes have been spawned and we can just # update _max_workers and return self._max_workers = max_workers return self._wait_job_completion() # Some process might have returned due to timeout so check how many # children are still alive. Use the _process_management_lock to # ensure that no process are spawned or timeout during the resize. with self._processes_management_lock: processes = list(self._processes.values()) nb_children_alive = sum(p.is_alive() for p in processes) self._max_workers = max_workers for _ in range(max_workers, nb_children_alive): self._call_queue.put(None) while ( len(self._processes) > max_workers and not self._flags.broken ): time.sleep(1e-3) self._adjust_process_count() processes = list(self._processes.values()) while not all(p.is_alive() for p in processes): time.sleep(1e-3) def _wait_job_completion(self): """Wait for the cache to be empty before resizing the pool.""" # Issue a warning to the user about the bad effect of this usage. if self._pending_work_items: warnings.warn( "Trying to resize an executor with running jobs: " "waiting for jobs completion before resizing.", UserWarning, ) mp.util.debug( f"Executor {self.executor_id} waiting for jobs completion " "before resizing" ) # Wait for the completion of the jobs while self._pending_work_items: time.sleep(1e-3) def _setup_queues(self, job_reducers, result_reducers): # As this executor can be resized, use a large queue size to avoid # underestimating capacity and introducing overhead queue_size = 2 * cpu_count() + EXTRA_QUEUED_CALLS super()._setup_queues( job_reducers, result_reducers, queue_size=queue_size ) PKaZZZ��J�88)joblib/externals/loky/backend/__init__.pyimport os from multiprocessing import synchronize from .context import get_context def _make_name(): return f"/loky-{os.getpid()}-{next(synchronize.SemLock._rand)}" # monkey patch the name creation for multiprocessing synchronize.SemLock._make_name = staticmethod(_make_name) __all__ = ["get_context"] PKaZZZ�$��1joblib/externals/loky/backend/_posix_reduction.py############################################################################### # Extra reducers for Unix based system and connections objects # # author: Thomas Moreau and Olivier Grisel # # adapted from multiprocessing/reduction.py (17/02/2017) # * Add adapted reduction for LokyProcesses and socket/Connection # import os import socket import _socket from multiprocessing.connection import Connection from multiprocessing.context import get_spawning_popen from .reduction import register HAVE_SEND_HANDLE = ( hasattr(socket, "CMSG_LEN") and hasattr(socket, "SCM_RIGHTS") and hasattr(socket.socket, "sendmsg") ) def _mk_inheritable(fd): os.set_inheritable(fd, True) return fd def DupFd(fd): """Return a wrapper for an fd.""" popen_obj = get_spawning_popen() if popen_obj is not None: return popen_obj.DupFd(popen_obj.duplicate_for_child(fd)) elif HAVE_SEND_HANDLE: from multiprocessing import resource_sharer return resource_sharer.DupFd(fd) else: raise TypeError( "Cannot pickle connection object. This object can only be " "passed when spawning a new process" ) def _reduce_socket(s): df = DupFd(s.fileno()) return _rebuild_socket, (df, s.family, s.type, s.proto) def _rebuild_socket(df, family, type, proto): fd = df.detach() return socket.fromfd(fd, family, type, proto) def rebuild_connection(df, readable, writable): fd = df.detach() return Connection(fd, readable, writable) def reduce_connection(conn): df = DupFd(conn.fileno()) return rebuild_connection, (df, conn.readable, conn.writable) register(socket.socket, _reduce_socket) register(_socket.socket, _reduce_socket) register(Connection, reduce_connection) PKaZZZj�gܫ�/joblib/externals/loky/backend/_win_reduction.py############################################################################### # Extra reducers for Windows system and connections objects # # author: Thomas Moreau and Olivier Grisel # # adapted from multiprocessing/reduction.py (17/02/2017) # * Add adapted reduction for LokyProcesses and socket/PipeConnection # import socket from multiprocessing import connection from multiprocessing.reduction import _reduce_socket from .reduction import register # register reduction for win32 communication objects register(socket.socket, _reduce_socket) register(connection.Connection, connection.reduce_connection) register(connection.PipeConnection, connection.reduce_pipe_connection) PKaZZZ����V5V5(joblib/externals/loky/backend/context.py############################################################################### # Basic context management with LokyContext # # author: Thomas Moreau and Olivier Grisel # # adapted from multiprocessing/context.py # * Create a context ensuring loky uses only objects that are compatible # * Add LokyContext to the list of context of multiprocessing so loky can be # used with multiprocessing.set_start_method # * Implement a CFS-aware amd physical-core aware cpu_count function. # import os import sys import math import subprocess import traceback import warnings import multiprocessing as mp from multiprocessing import get_context as mp_get_context from multiprocessing.context import BaseContext from .process import LokyProcess, LokyInitMainProcess # Apparently, on older Python versions, loky cannot work 61 workers on Windows # but instead 60: ¯\_(ツ)_/¯ if sys.version_info >= (3, 8): from concurrent.futures.process import _MAX_WINDOWS_WORKERS if sys.version_info < (3, 10): _MAX_WINDOWS_WORKERS = _MAX_WINDOWS_WORKERS - 1 else: # compat for versions before 3.8 which do not define this. _MAX_WINDOWS_WORKERS = 60 START_METHODS = ["loky", "loky_init_main", "spawn"] if sys.platform != "win32": START_METHODS += ["fork", "forkserver"] _DEFAULT_START_METHOD = None # Cache for the number of physical cores to avoid repeating subprocess calls. # It should not change during the lifetime of the program. physical_cores_cache = None def get_context(method=None): # Try to overload the default context method = method or _DEFAULT_START_METHOD or "loky" if method == "fork": # If 'fork' is explicitly requested, warn user about potential issues. warnings.warn( "`fork` start method should not be used with " "`loky` as it does not respect POSIX. Try using " "`spawn` or `loky` instead.", UserWarning, ) try: return mp_get_context(method) except ValueError: raise ValueError( f"Unknown context '{method}'. Value should be in " f"{START_METHODS}." ) def set_start_method(method, force=False): global _DEFAULT_START_METHOD if _DEFAULT_START_METHOD is not None and not force: raise RuntimeError("context has already been set") assert method is None or method in START_METHODS, ( f"'{method}' is not a valid start_method. It should be in " f"{START_METHODS}" ) _DEFAULT_START_METHOD = method def get_start_method(): return _DEFAULT_START_METHOD def cpu_count(only_physical_cores=False): """Return the number of CPUs the current process can use. The returned number of CPUs accounts for: * the number of CPUs in the system, as given by ``multiprocessing.cpu_count``; * the CPU affinity settings of the current process (available on some Unix systems); * Cgroup CPU bandwidth limit (available on Linux only, typically set by docker and similar container orchestration systems); * the value of the LOKY_MAX_CPU_COUNT environment variable if defined. and is given as the minimum of these constraints. If ``only_physical_cores`` is True, return the number of physical cores instead of the number of logical cores (hyperthreading / SMT). Note that this option is not enforced if the number of usable cores is controlled in any other way such as: process affinity, Cgroup restricted CPU bandwidth or the LOKY_MAX_CPU_COUNT environment variable. If the number of physical cores is not found, return the number of logical cores. Note that on Windows, the returned number of CPUs cannot exceed 61 (or 60 for Python < 3.10), see: https://bugs.python.org/issue26903. It is also always larger or equal to 1. """ # Note: os.cpu_count() is allowed to return None in its docstring os_cpu_count = os.cpu_count() or 1 if sys.platform == "win32": # On Windows, attempting to use more than 61 CPUs would result in a # OS-level error. See https://bugs.python.org/issue26903. According to # https://learn.microsoft.com/en-us/windows/win32/procthread/processor-groups # it might be possible to go beyond with a lot of extra work but this # does not look easy. os_cpu_count = min(os_cpu_count, _MAX_WINDOWS_WORKERS) cpu_count_user = _cpu_count_user(os_cpu_count) aggregate_cpu_count = max(min(os_cpu_count, cpu_count_user), 1) if not only_physical_cores: return aggregate_cpu_count if cpu_count_user < os_cpu_count: # Respect user setting return max(cpu_count_user, 1) cpu_count_physical, exception = _count_physical_cores() if cpu_count_physical != "not found": return cpu_count_physical # Fallback to default behavior if exception is not None: # warns only the first time warnings.warn( "Could not find the number of physical cores for the " f"following reason:\n{exception}\n" "Returning the number of logical cores instead. You can " "silence this warning by setting LOKY_MAX_CPU_COUNT to " "the number of cores you want to use." ) traceback.print_tb(exception.__traceback__) return aggregate_cpu_count def _cpu_count_cgroup(os_cpu_count): # Cgroup CPU bandwidth limit available in Linux since 2.6 kernel cpu_max_fname = "/sys/fs/cgroup/cpu.max" cfs_quota_fname = "/sys/fs/cgroup/cpu/cpu.cfs_quota_us" cfs_period_fname = "/sys/fs/cgroup/cpu/cpu.cfs_period_us" if os.path.exists(cpu_max_fname): # cgroup v2 # https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html with open(cpu_max_fname) as fh: cpu_quota_us, cpu_period_us = fh.read().strip().split() elif os.path.exists(cfs_quota_fname) and os.path.exists(cfs_period_fname): # cgroup v1 # https://www.kernel.org/doc/html/latest/scheduler/sched-bwc.html#management with open(cfs_quota_fname) as fh: cpu_quota_us = fh.read().strip() with open(cfs_period_fname) as fh: cpu_period_us = fh.read().strip() else: # No Cgroup CPU bandwidth limit (e.g. non-Linux platform) cpu_quota_us = "max" cpu_period_us = 100_000 # unused, for consistency with default values if cpu_quota_us == "max": # No active Cgroup quota on a Cgroup-capable platform return os_cpu_count else: cpu_quota_us = int(cpu_quota_us) cpu_period_us = int(cpu_period_us) if cpu_quota_us > 0 and cpu_period_us > 0: return math.ceil(cpu_quota_us / cpu_period_us) else: # pragma: no cover # Setting a negative cpu_quota_us value is a valid way to disable # cgroup CPU bandwith limits return os_cpu_count def _cpu_count_affinity(os_cpu_count): # Number of available CPUs given affinity settings if hasattr(os, "sched_getaffinity"): try: return len(os.sched_getaffinity(0)) except NotImplementedError: pass # On PyPy and possibly other platforms, os.sched_getaffinity does not exist # or raises NotImplementedError, let's try with the psutil if installed. try: import psutil p = psutil.Process() if hasattr(p, "cpu_affinity"): return len(p.cpu_affinity()) except ImportError: # pragma: no cover if ( sys.platform == "linux" and os.environ.get("LOKY_MAX_CPU_COUNT") is None ): # PyPy does not implement os.sched_getaffinity on Linux which # can cause severe oversubscription problems. Better warn the # user in this particularly pathological case which can wreck # havoc, typically on CI workers. warnings.warn( "Failed to inspect CPU affinity constraints on this system. " "Please install psutil or explictly set LOKY_MAX_CPU_COUNT." ) # This can happen for platforms that do not implement any kind of CPU # infinity such as macOS-based platforms. return os_cpu_count def _cpu_count_user(os_cpu_count): """Number of user defined available CPUs""" cpu_count_affinity = _cpu_count_affinity(os_cpu_count) cpu_count_cgroup = _cpu_count_cgroup(os_cpu_count) # User defined soft-limit passed as a loky specific environment variable. cpu_count_loky = int(os.environ.get("LOKY_MAX_CPU_COUNT", os_cpu_count)) return min(cpu_count_affinity, cpu_count_cgroup, cpu_count_loky) def _count_physical_cores(): """Return a tuple (number of physical cores, exception) If the number of physical cores is found, exception is set to None. If it has not been found, return ("not found", exception). The number of physical cores is cached to avoid repeating subprocess calls. """ exception = None # First check if the value is cached global physical_cores_cache if physical_cores_cache is not None: return physical_cores_cache, exception # Not cached yet, find it try: if sys.platform == "linux": cpu_info = subprocess.run( "lscpu --parse=core".split(), capture_output=True, text=True ) cpu_info = cpu_info.stdout.splitlines() cpu_info = {line for line in cpu_info if not line.startswith("#")} cpu_count_physical = len(cpu_info) elif sys.platform == "win32": cpu_info = subprocess.run( "wmic CPU Get NumberOfCores /Format:csv".split(), capture_output=True, text=True, ) cpu_info = cpu_info.stdout.splitlines() cpu_info = [ l.split(",")[1] for l in cpu_info if (l and l != "Node,NumberOfCores") ] cpu_count_physical = sum(map(int, cpu_info)) elif sys.platform == "darwin": cpu_info = subprocess.run( "sysctl -n hw.physicalcpu".split(), capture_output=True, text=True, ) cpu_info = cpu_info.stdout cpu_count_physical = int(cpu_info) else: raise NotImplementedError(f"unsupported platform: {sys.platform}") # if cpu_count_physical < 1, we did not find a valid value if cpu_count_physical < 1: raise ValueError(f"found {cpu_count_physical} physical cores < 1") except Exception as e: exception = e cpu_count_physical = "not found" # Put the result in cache physical_cores_cache = cpu_count_physical return cpu_count_physical, exception class LokyContext(BaseContext): """Context relying on the LokyProcess.""" _name = "loky" Process = LokyProcess cpu_count = staticmethod(cpu_count) def Queue(self, maxsize=0, reducers=None): """Returns a queue object""" from .queues import Queue return Queue(maxsize, reducers=reducers, ctx=self.get_context()) def SimpleQueue(self, reducers=None): """Returns a queue object""" from .queues import SimpleQueue return SimpleQueue(reducers=reducers, ctx=self.get_context()) if sys.platform != "win32": """For Unix platform, use our custom implementation of synchronize ensuring that we use the loky.backend.resource_tracker to clean-up the semaphores in case of a worker crash. """ def Semaphore(self, value=1): """Returns a semaphore object""" from .synchronize import Semaphore return Semaphore(value=value) def BoundedSemaphore(self, value): """Returns a bounded semaphore object""" from .synchronize import BoundedSemaphore return BoundedSemaphore(value) def Lock(self): """Returns a lock object""" from .synchronize import Lock return Lock() def RLock(self): """Returns a recurrent lock object""" from .synchronize import RLock return RLock() def Condition(self, lock=None): """Returns a condition object""" from .synchronize import Condition return Condition(lock) def Event(self): """Returns an event object""" from .synchronize import Event return Event() class LokyInitMainContext(LokyContext): """Extra context with LokyProcess, which does load the main module This context is used for compatibility in the case ``cloudpickle`` is not present on the running system. This permits to load functions defined in the ``main`` module, using proper safeguards. The declaration of the ``executor`` should be protected by ``if __name__ == "__main__":`` and the functions and variable used from main should be out of this block. This mimics the default behavior of multiprocessing under Windows and the behavior of the ``spawn`` start method on a posix system. For more details, see the end of the following section of python doc https://docs.python.org/3/library/multiprocessing.html#multiprocessing-programming """ _name = "loky_init_main" Process = LokyInitMainProcess # Register loky context so it works with multiprocessing.get_context ctx_loky = LokyContext() mp.context._concrete_contexts["loky"] = ctx_loky mp.context._concrete_contexts["loky_init_main"] = LokyInitMainContext() PKaZZZ��A��*joblib/externals/loky/backend/fork_exec.py############################################################################### # Launch a subprocess using forkexec and make sure only the needed fd are # shared in the two process. # # author: Thomas Moreau and Olivier Grisel # import os import sys def close_fds(keep_fds): # pragma: no cover """Close all the file descriptors except those in keep_fds.""" # Make sure to keep stdout and stderr open for logging purpose keep_fds = {*keep_fds, 1, 2} # We try to retrieve all the open fds try: open_fds = {int(fd) for fd in os.listdir("/proc/self/fd")} except FileNotFoundError: import resource max_nfds = resource.getrlimit(resource.RLIMIT_NOFILE)[0] open_fds = {*range(max_nfds)} for i in open_fds - keep_fds: try: os.close(i) except OSError: pass def fork_exec(cmd, keep_fds, env=None): # copy the environment variables to set in the child process env = env or {} child_env = {**os.environ, **env} pid = os.fork() if pid == 0: # pragma: no cover close_fds(keep_fds) os.execve(sys.executable, cmd, child_env) else: return pid PKaZZZB�4j��1joblib/externals/loky/backend/popen_loky_posix.py############################################################################### # Popen for LokyProcess. # # author: Thomas Moreau and Olivier Grisel # import os import sys import signal import pickle from io import BytesIO from multiprocessing import util, process from multiprocessing.connection import wait from multiprocessing.context import set_spawning_popen from . import reduction, resource_tracker, spawn __all__ = ["Popen"] # # Wrapper for an fd used while launching a process # class _DupFd: def __init__(self, fd): self.fd = reduction._mk_inheritable(fd) def detach(self): return self.fd # # Start child process using subprocess.Popen # class Popen: method = "loky" DupFd = _DupFd def __init__(self, process_obj): sys.stdout.flush() sys.stderr.flush() self.returncode = None self._fds = [] self._launch(process_obj) def duplicate_for_child(self, fd): self._fds.append(fd) return reduction._mk_inheritable(fd) def poll(self, flag=os.WNOHANG): if self.returncode is None: while True: try: pid, sts = os.waitpid(self.pid, flag) except OSError: # Child process not yet created. See #1731717 # e.errno == errno.ECHILD == 10 return None else: break if pid == self.pid: if os.WIFSIGNALED(sts): self.returncode = -os.WTERMSIG(sts) else: assert os.WIFEXITED(sts) self.returncode = os.WEXITSTATUS(sts) return self.returncode def wait(self, timeout=None): if self.returncode is None: if timeout is not None: if not wait([self.sentinel], timeout): return None # This shouldn't block if wait() returned successfully. return self.poll(os.WNOHANG if timeout == 0.0 else 0) return self.returncode def terminate(self): if self.returncode is None: try: os.kill(self.pid, signal.SIGTERM) except ProcessLookupError: pass except OSError: if self.wait(timeout=0.1) is None: raise def _launch(self, process_obj): tracker_fd = resource_tracker._resource_tracker.getfd() fp = BytesIO() set_spawning_popen(self) try: prep_data = spawn.get_preparation_data( process_obj._name, getattr(process_obj, "init_main_module", True), ) reduction.dump(prep_data, fp) reduction.dump(process_obj, fp) finally: set_spawning_popen(None) try: parent_r, child_w = os.pipe() child_r, parent_w = os.pipe() # for fd in self._fds: # _mk_inheritable(fd) cmd_python = [sys.executable] cmd_python += ["-m", self.__module__] cmd_python += ["--process-name", str(process_obj.name)] cmd_python += ["--pipe", str(reduction._mk_inheritable(child_r))] reduction._mk_inheritable(child_w) reduction._mk_inheritable(tracker_fd) self._fds += [child_r, child_w, tracker_fd] if sys.version_info >= (3, 8) and os.name == "posix": mp_tracker_fd = prep_data["mp_tracker_args"]["fd"] self.duplicate_for_child(mp_tracker_fd) from .fork_exec import fork_exec pid = fork_exec(cmd_python, self._fds, env=process_obj.env) util.debug( f"launched python with pid {pid} and cmd:\n{cmd_python}" ) self.sentinel = parent_r method = "getbuffer" if not hasattr(fp, method): method = "getvalue" with os.fdopen(parent_w, "wb") as f: f.write(getattr(fp, method)()) self.pid = pid finally: if parent_r is not None: util.Finalize(self, os.close, (parent_r,)) for fd in (child_r, child_w): if fd is not None: os.close(fd) @staticmethod def thread_is_spawning(): return True if __name__ == "__main__": import argparse parser = argparse.ArgumentParser("Command line parser") parser.add_argument( "--pipe", type=int, required=True, help="File handle for the pipe" ) parser.add_argument( "--process-name", type=str, default=None, help="Identifier for debugging purpose", ) args = parser.parse_args() info = {} exitcode = 1 try: with os.fdopen(args.pipe, "rb") as from_parent: process.current_process()._inheriting = True try: prep_data = pickle.load(from_parent) spawn.prepare(prep_data) process_obj = pickle.load(from_parent) finally: del process.current_process()._inheriting exitcode = process_obj._bootstrap() except Exception: print("\n\n" + "-" * 80) print(f"{args.process_name} failed with traceback: ") print("-" * 80) import traceback print(traceback.format_exc()) print("\n" + "-" * 80) finally: if from_parent is not None: from_parent.close() sys.exit(exitcode) PKaZZZ�����1joblib/externals/loky/backend/popen_loky_win32.pyimport os import sys import msvcrt import _winapi from pickle import load from multiprocessing import process, util from multiprocessing.context import set_spawning_popen from multiprocessing.popen_spawn_win32 import Popen as _Popen from . import reduction, spawn __all__ = ["Popen"] # # # def _path_eq(p1, p2): return p1 == p2 or os.path.normcase(p1) == os.path.normcase(p2) WINENV = hasattr(sys, "_base_executable") and not _path_eq( sys.executable, sys._base_executable ) def _close_handles(*handles): for handle in handles: _winapi.CloseHandle(handle) # # We define a Popen class similar to the one from subprocess, but # whose constructor takes a process object as its argument. # class Popen(_Popen): """ Start a subprocess to run the code of a process object. We differ from cpython implementation with the way we handle environment variables, in order to be able to modify then in the child processes before importing any library, in order to control the number of threads in C-level threadpools. We also use the loky preparation data, in particular to handle main_module inits and the loky resource tracker. """ method = "loky" def __init__(self, process_obj): prep_data = spawn.get_preparation_data( process_obj._name, getattr(process_obj, "init_main_module", True) ) # read end of pipe will be duplicated by the child process # -- see spawn_main() in spawn.py. # # bpo-33929: Previously, the read end of pipe was "stolen" by the child # process, but it leaked a handle if the child process had been # terminated before it could steal the handle from the parent process. rhandle, whandle = _winapi.CreatePipe(None, 0) wfd = msvcrt.open_osfhandle(whandle, 0) cmd = get_command_line(parent_pid=os.getpid(), pipe_handle=rhandle) python_exe = spawn.get_executable() # copy the environment variables to set in the child process child_env = {**os.environ, **process_obj.env} # bpo-35797: When running in a venv, we bypass the redirect # executor and launch our base Python. if WINENV and _path_eq(python_exe, sys.executable): cmd[0] = python_exe = sys._base_executable child_env["__PYVENV_LAUNCHER__"] = sys.executable cmd = " ".join(f'"{x}"' for x in cmd) with open(wfd, "wb") as to_child: # start process try: hp, ht, pid, _ = _winapi.CreateProcess( python_exe, cmd, None, None, False, 0, child_env, None, None, ) _winapi.CloseHandle(ht) except BaseException: _winapi.CloseHandle(rhandle) raise # set attributes of self self.pid = pid self.returncode = None self._handle = hp self.sentinel = int(hp) self.finalizer = util.Finalize( self, _close_handles, (self.sentinel, int(rhandle)) ) # send information to child set_spawning_popen(self) try: reduction.dump(prep_data, to_child) reduction.dump(process_obj, to_child) finally: set_spawning_popen(None) def get_command_line(pipe_handle, parent_pid, **kwds): """Returns prefix of command line used for spawning a child process.""" if getattr(sys, "frozen", False): return [sys.executable, "--multiprocessing-fork", pipe_handle] else: prog = ( "from joblib.externals.loky.backend.popen_loky_win32 import main; " f"main(pipe_handle={pipe_handle}, parent_pid={parent_pid})" ) opts = util._args_from_interpreter_flags() return [ spawn.get_executable(), *opts, "-c", prog, "--multiprocessing-fork", ] def is_forking(argv): """Return whether commandline indicates we are forking.""" if len(argv) >= 2 and argv[1] == "--multiprocessing-fork": return True else: return False def main(pipe_handle, parent_pid=None): """Run code specified by data received over pipe.""" assert is_forking(sys.argv), "Not forking" if parent_pid is not None: source_process = _winapi.OpenProcess( _winapi.SYNCHRONIZE | _winapi.PROCESS_DUP_HANDLE, False, parent_pid ) else: source_process = None new_handle = reduction.duplicate( pipe_handle, source_process=source_process ) fd = msvcrt.open_osfhandle(new_handle, os.O_RDONLY) parent_sentinel = source_process with os.fdopen(fd, "rb", closefd=True) as from_parent: process.current_process()._inheriting = True try: preparation_data = load(from_parent) spawn.prepare(preparation_data, parent_sentinel) self = load(from_parent) finally: del process.current_process()._inheriting exitcode = self._bootstrap(parent_sentinel) sys.exit(exitcode) PKaZZZ��O��(joblib/externals/loky/backend/process.py############################################################################### # LokyProcess implementation # # authors: Thomas Moreau and Olivier Grisel # # based on multiprocessing/process.py (17/02/2017) # import sys from multiprocessing.context import assert_spawning from multiprocessing.process import BaseProcess class LokyProcess(BaseProcess): _start_method = "loky" def __init__( self, group=None, target=None, name=None, args=(), kwargs={}, daemon=None, init_main_module=False, env=None, ): super().__init__( group=group, target=target, name=name, args=args, kwargs=kwargs, daemon=daemon, ) self.env = {} if env is None else env self.authkey = self.authkey self.init_main_module = init_main_module @staticmethod def _Popen(process_obj): if sys.platform == "win32": from .popen_loky_win32 import Popen else: from .popen_loky_posix import Popen return Popen(process_obj) class LokyInitMainProcess(LokyProcess): _start_method = "loky_init_main" def __init__( self, group=None, target=None, name=None, args=(), kwargs={}, daemon=None, ): super().__init__( group=group, target=target, name=name, args=args, kwargs=kwargs, daemon=daemon, init_main_module=True, ) # # We subclass bytes to avoid accidental transmission of auth keys over network # class AuthenticationKey(bytes): def __reduce__(self): try: assert_spawning(self) except RuntimeError: raise TypeError( "Pickling an AuthenticationKey object is " "disallowed for security reasons" ) return AuthenticationKey, (bytes(self),) PKaZZZ���ۚ�'joblib/externals/loky/backend/queues.py############################################################################### # Queue and SimpleQueue implementation for loky # # authors: Thomas Moreau, Olivier Grisel # # based on multiprocessing/queues.py (16/02/2017) # * Add some custom reducers for the Queues/SimpleQueue to tweak the # pickling process. (overload Queue._feed/SimpleQueue.put) # import os import sys import errno import weakref import threading from multiprocessing import util from multiprocessing.queues import ( Full, Queue as mp_Queue, SimpleQueue as mp_SimpleQueue, _sentinel, ) from multiprocessing.context import assert_spawning from .reduction import dumps __all__ = ["Queue", "SimpleQueue", "Full"] class Queue(mp_Queue): def __init__(self, maxsize=0, reducers=None, ctx=None): super().__init__(maxsize=maxsize, ctx=ctx) self._reducers = reducers # Use custom queue set/get state to be able to reduce the custom reducers def __getstate__(self): assert_spawning(self) return ( self._ignore_epipe, self._maxsize, self._reader, self._writer, self._reducers, self._rlock, self._wlock, self._sem, self._opid, ) def __setstate__(self, state): ( self._ignore_epipe, self._maxsize, self._reader, self._writer, self._reducers, self._rlock, self._wlock, self._sem, self._opid, ) = state if sys.version_info >= (3, 9): self._reset() else: self._after_fork() # Overload _start_thread to correctly call our custom _feed def _start_thread(self): util.debug("Queue._start_thread()") # Start thread which transfers data from buffer to pipe self._buffer.clear() self._thread = threading.Thread( target=Queue._feed, args=( self._buffer, self._notempty, self._send_bytes, self._wlock, self._writer.close, self._reducers, self._ignore_epipe, self._on_queue_feeder_error, self._sem, ), name="QueueFeederThread", ) self._thread.daemon = True util.debug("doing self._thread.start()") self._thread.start() util.debug("... done self._thread.start()") # On process exit we will wait for data to be flushed to pipe. # # However, if this process created the queue then all # processes which use the queue will be descendants of this # process. Therefore waiting for the queue to be flushed # is pointless once all the child processes have been joined. created_by_this_process = self._opid == os.getpid() if not self._joincancelled and not created_by_this_process: self._jointhread = util.Finalize( self._thread, Queue._finalize_join, [weakref.ref(self._thread)], exitpriority=-5, ) # Send sentinel to the thread queue object when garbage collected self._close = util.Finalize( self, Queue._finalize_close, [self._buffer, self._notempty], exitpriority=10, ) # Overload the _feed methods to use our custom pickling strategy. @staticmethod def _feed( buffer, notempty, send_bytes, writelock, close, reducers, ignore_epipe, onerror, queue_sem, ): util.debug("starting thread to feed data to pipe") nacquire = notempty.acquire nrelease = notempty.release nwait = notempty.wait bpopleft = buffer.popleft sentinel = _sentinel if sys.platform != "win32": wacquire = writelock.acquire wrelease = writelock.release else: wacquire = None while True: try: nacquire() try: if not buffer: nwait() finally: nrelease() try: while True: obj = bpopleft() if obj is sentinel: util.debug("feeder thread got sentinel -- exiting") close() return # serialize the data before acquiring the lock obj_ = dumps(obj, reducers=reducers) if wacquire is None: send_bytes(obj_) else: wacquire() try: send_bytes(obj_) finally: wrelease() # Remove references early to avoid leaking memory del obj, obj_ except IndexError: pass except BaseException as e: if ignore_epipe and getattr(e, "errno", 0) == errno.EPIPE: return # Since this runs in a daemon thread the resources it uses # may be become unusable while the process is cleaning up. # We ignore errors which happen after the process has # started to cleanup. if util.is_exiting(): util.info(f"error in queue thread: {e}") return else: queue_sem.release() onerror(e, obj) def _on_queue_feeder_error(self, e, obj): """ Private API hook called when feeding data in the background thread raises an exception. For overriding by concurrent.futures. """ import traceback traceback.print_exc() class SimpleQueue(mp_SimpleQueue): def __init__(self, reducers=None, ctx=None): super().__init__(ctx=ctx) # Add possiblity to use custom reducers self._reducers = reducers def close(self): self._reader.close() self._writer.close() # Use custom queue set/get state to be able to reduce the custom reducers def __getstate__(self): assert_spawning(self) return ( self._reader, self._writer, self._reducers, self._rlock, self._wlock, ) def __setstate__(self, state): ( self._reader, self._writer, self._reducers, self._rlock, self._wlock, ) = state # Overload put to use our customizable reducer def put(self, obj): # serialize the data before acquiring the lock obj = dumps(obj, reducers=self._reducers) if self._wlock is None: # writes to a message oriented win32 pipe are atomic self._writer.send_bytes(obj) else: with self._wlock: self._writer.send_bytes(obj) PKaZZZ�Vߗ�*joblib/externals/loky/backend/reduction.py############################################################################### # Customizable Pickler with some basic reducers # # author: Thomas Moreau # # adapted from multiprocessing/reduction.py (17/02/2017) # * Replace the ForkingPickler with a similar _LokyPickler, # * Add CustomizableLokyPickler to allow customizing pickling process # on the fly. # import copyreg import io import functools import types import sys import os from multiprocessing import util from pickle import loads, HIGHEST_PROTOCOL ############################################################################### # Enable custom pickling in Loky. _dispatch_table = {} def register(type_, reduce_function): _dispatch_table[type_] = reduce_function ############################################################################### # Registers extra pickling routines to improve picklization for loky # make methods picklable def _reduce_method(m): if m.__self__ is None: return getattr, (m.__class__, m.__func__.__name__) else: return getattr, (m.__self__, m.__func__.__name__) class _C: def f(self): pass @classmethod def h(cls): pass register(type(_C().f), _reduce_method) register(type(_C.h), _reduce_method) if not hasattr(sys, "pypy_version_info"): # PyPy uses functions instead of method_descriptors and wrapper_descriptors def _reduce_method_descriptor(m): return getattr, (m.__objclass__, m.__name__) register(type(list.append), _reduce_method_descriptor) register(type(int.__add__), _reduce_method_descriptor) # Make partial func pickable def _reduce_partial(p): return _rebuild_partial, (p.func, p.args, p.keywords or {}) def _rebuild_partial(func, args, keywords): return functools.partial(func, *args, **keywords) register(functools.partial, _reduce_partial) if sys.platform != "win32": from ._posix_reduction import _mk_inheritable # noqa: F401 else: from . import _win_reduction # noqa: F401 # global variable to change the pickler behavior try: from joblib.externals import cloudpickle # noqa: F401 DEFAULT_ENV = "cloudpickle" except ImportError: # If cloudpickle is not present, fallback to pickle DEFAULT_ENV = "pickle" ENV_LOKY_PICKLER = os.environ.get("LOKY_PICKLER", DEFAULT_ENV) _LokyPickler = None _loky_pickler_name = None def set_loky_pickler(loky_pickler=None): global _LokyPickler, _loky_pickler_name if loky_pickler is None: loky_pickler = ENV_LOKY_PICKLER loky_pickler_cls = None # The default loky_pickler is cloudpickle if loky_pickler in ["", None]: loky_pickler = "cloudpickle" if loky_pickler == _loky_pickler_name: return if loky_pickler == "cloudpickle": from joblib.externals.cloudpickle import CloudPickler as loky_pickler_cls else: try: from importlib import import_module module_pickle = import_module(loky_pickler) loky_pickler_cls = module_pickle.Pickler except (ImportError, AttributeError) as e: extra_info = ( "\nThis error occurred while setting loky_pickler to" f" '{loky_pickler}', as required by the env variable " "LOKY_PICKLER or the function set_loky_pickler." ) e.args = (e.args[0] + extra_info,) + e.args[1:] e.msg = e.args[0] raise e util.debug( f"Using '{loky_pickler if loky_pickler else 'cloudpickle'}' for " "serialization." ) class CustomizablePickler(loky_pickler_cls): _loky_pickler_cls = loky_pickler_cls def _set_dispatch_table(self, dispatch_table): for ancestor_class in self._loky_pickler_cls.mro(): dt_attribute = getattr(ancestor_class, "dispatch_table", None) if isinstance(dt_attribute, types.MemberDescriptorType): # Ancestor class (typically _pickle.Pickler) has a # member_descriptor for its "dispatch_table" attribute. Use # it to set the dispatch_table as a member instead of a # dynamic attribute in the __dict__ of the instance, # otherwise it will not be taken into account by the C # implementation of the dump method if a subclass defines a # class-level dispatch_table attribute as was done in # cloudpickle 1.6.0: # https://github.com/joblib/loky/pull/260 dt_attribute.__set__(self, dispatch_table) break # On top of member descriptor set, also use setattr such that code # that directly access self.dispatch_table gets a consistent view # of the same table. self.dispatch_table = dispatch_table def __init__(self, writer, reducers=None, protocol=HIGHEST_PROTOCOL): loky_pickler_cls.__init__(self, writer, protocol=protocol) if reducers is None: reducers = {} if hasattr(self, "dispatch_table"): # Force a copy that we will update without mutating the # any class level defined dispatch_table. loky_dt = dict(self.dispatch_table) else: # Use standard reducers as bases loky_dt = copyreg.dispatch_table.copy() # Register loky specific reducers loky_dt.update(_dispatch_table) # Set the new dispatch table, taking care of the fact that we # need to use the member_descriptor when we inherit from a # subclass of the C implementation of the Pickler base class # with an class level dispatch_table attribute. self._set_dispatch_table(loky_dt) # Register the reducers for type, reduce_func in reducers.items(): self.register(type, reduce_func) def register(self, type, reduce_func): """Attach a reducer function to a given type in the dispatch table.""" self.dispatch_table[type] = reduce_func _LokyPickler = CustomizablePickler _loky_pickler_name = loky_pickler def get_loky_pickler_name(): global _loky_pickler_name return _loky_pickler_name def get_loky_pickler(): global _LokyPickler return _LokyPickler # Set it to its default value set_loky_pickler() def dump(obj, file, reducers=None, protocol=None): """Replacement for pickle.dump() using _LokyPickler.""" global _LokyPickler _LokyPickler(file, reducers=reducers, protocol=protocol).dump(obj) def dumps(obj, reducers=None, protocol=None): global _LokyPickler buf = io.BytesIO() dump(obj, buf, reducers=reducers, protocol=protocol) return buf.getbuffer() __all__ = ["dump", "dumps", "loads", "register", "set_loky_pickler"] if sys.platform == "win32": from multiprocessing.reduction import duplicate __all__ += ["duplicate"] PKaZZZ��f(�8�81joblib/externals/loky/backend/resource_tracker.py############################################################################### # Server process to keep track of unlinked resources, like folders and # semaphores and clean them. # # author: Thomas Moreau # # adapted from multiprocessing/semaphore_tracker.py (17/02/2017) # * include custom spawnv_passfds to start the process # * add some VERBOSE logging # # TODO: multiprocessing.resource_tracker was contributed to Python 3.8 so # once loky drops support for Python 3.7 it might be possible to stop # maintaining this loky-specific fork. As a consequence, it might also be # possible to stop maintaining the loky.backend.synchronize fork of # multiprocessing.synchronize. # # On Unix we run a server process which keeps track of unlinked # resources. The server ignores SIGINT and SIGTERM and reads from a # pipe. The resource_tracker implements a reference counting scheme: each time # a Python process anticipates the shared usage of a resource by another # process, it signals the resource_tracker of this shared usage, and in return, # the resource_tracker increments the resource's reference count by 1. # Similarly, when access to a resource is closed by a Python process, the # process notifies the resource_tracker by asking it to decrement the # resource's reference count by 1. When the reference count drops to 0, the # resource_tracker attempts to clean up the underlying resource. # Finally, every other process connected to the resource tracker has a copy of # the writable end of the pipe used to communicate with it, so the resource # tracker gets EOF when all other processes have exited. Then the # resource_tracker process unlinks any remaining leaked resources (with # reference count above 0) # For semaphores, this is important because the system only supports a limited # number of named semaphores, and they will not be automatically removed till # the next reboot. Without this resource tracker process, "killall python" # would probably leave unlinked semaphores. # Note that this behavior differs from CPython's resource_tracker, which only # implements list of shared resources, and not a proper refcounting scheme. # Also, CPython's resource tracker will only attempt to cleanup those shared # resources once all procsses connected to the resouce tracker have exited. import os import shutil import sys import signal import warnings import threading from _multiprocessing import sem_unlink from multiprocessing import util from . import spawn if sys.platform == "win32": import _winapi import msvcrt from multiprocessing.reduction import duplicate __all__ = ["ensure_running", "register", "unregister"] _HAVE_SIGMASK = hasattr(signal, "pthread_sigmask") _IGNORED_SIGNALS = (signal.SIGINT, signal.SIGTERM) _CLEANUP_FUNCS = {"folder": shutil.rmtree, "file": os.unlink} if os.name == "posix": _CLEANUP_FUNCS["semlock"] = sem_unlink VERBOSE = False class ResourceTracker: def __init__(self): self._lock = threading.Lock() self._fd = None self._pid = None def getfd(self): self.ensure_running() return self._fd def ensure_running(self): """Make sure that resource tracker process is running. This can be run from any process. Usually a child process will use the resource created by its parent.""" with self._lock: if self._fd is not None: # resource tracker was launched before, is it still running? if self._check_alive(): # => still alive return # => dead, launch it again os.close(self._fd) if os.name == "posix": try: # At this point, the resource_tracker process has been # killed or crashed. Let's remove the process entry # from the process table to avoid zombie processes. os.waitpid(self._pid, 0) except OSError: # The process was terminated or is a child from an # ancestor of the current process. pass self._fd = None self._pid = None warnings.warn( "resource_tracker: process died unexpectedly, " "relaunching. Some folders/sempahores might " "leak." ) fds_to_pass = [] try: fds_to_pass.append(sys.stderr.fileno()) except Exception: pass r, w = os.pipe() if sys.platform == "win32": _r = duplicate(msvcrt.get_osfhandle(r), inheritable=True) os.close(r) r = _r cmd = f"from {main.__module__} import main; main({r}, {VERBOSE})" try: fds_to_pass.append(r) # process will out live us, so no need to wait on pid exe = spawn.get_executable() args = [exe, *util._args_from_interpreter_flags(), "-c", cmd] util.debug(f"launching resource tracker: {args}") # bpo-33613: Register a signal mask that will block the # signals. This signal mask will be inherited by the child # that is going to be spawned and will protect the child from a # race condition that can make the child die before it # registers signal handlers for SIGINT and SIGTERM. The mask is # unregistered after spawning the child. try: if _HAVE_SIGMASK: signal.pthread_sigmask( signal.SIG_BLOCK, _IGNORED_SIGNALS ) pid = spawnv_passfds(exe, args, fds_to_pass) finally: if _HAVE_SIGMASK: signal.pthread_sigmask( signal.SIG_UNBLOCK, _IGNORED_SIGNALS ) except BaseException: os.close(w) raise else: self._fd = w self._pid = pid finally: if sys.platform == "win32": _winapi.CloseHandle(r) else: os.close(r) def _check_alive(self): """Check for the existence of the resource tracker process.""" try: self._send("PROBE", "", "") except BrokenPipeError: return False else: return True def register(self, name, rtype): """Register a named resource, and increment its refcount.""" self.ensure_running() self._send("REGISTER", name, rtype) def unregister(self, name, rtype): """Unregister a named resource with resource tracker.""" self.ensure_running() self._send("UNREGISTER", name, rtype) def maybe_unlink(self, name, rtype): """Decrement the refcount of a resource, and delete it if it hits 0""" self.ensure_running() self._send("MAYBE_UNLINK", name, rtype) def _send(self, cmd, name, rtype): if len(name) > 512: # posix guarantees that writes to a pipe of less than PIPE_BUF # bytes are atomic, and that PIPE_BUF >= 512 raise ValueError("name too long") msg = f"{cmd}:{name}:{rtype}\n".encode("ascii") nbytes = os.write(self._fd, msg) assert nbytes == len(msg) _resource_tracker = ResourceTracker() ensure_running = _resource_tracker.ensure_running register = _resource_tracker.register maybe_unlink = _resource_tracker.maybe_unlink unregister = _resource_tracker.unregister getfd = _resource_tracker.getfd def main(fd, verbose=0): """Run resource tracker.""" # protect the process from ^C and "killall python" etc if verbose: util.log_to_stderr(level=util.DEBUG) signal.signal(signal.SIGINT, signal.SIG_IGN) signal.signal(signal.SIGTERM, signal.SIG_IGN) if _HAVE_SIGMASK: signal.pthread_sigmask(signal.SIG_UNBLOCK, _IGNORED_SIGNALS) for f in (sys.stdin, sys.stdout): try: f.close() except Exception: pass if verbose: util.debug("Main resource tracker is running") registry = {rtype: {} for rtype in _CLEANUP_FUNCS.keys()} try: # keep track of registered/unregistered resources if sys.platform == "win32": fd = msvcrt.open_osfhandle(fd, os.O_RDONLY) with open(fd, "rb") as f: while True: line = f.readline() if line == b"": # EOF break try: splitted = line.strip().decode("ascii").split(":") # name can potentially contain separator symbols (for # instance folders on Windows) cmd, name, rtype = ( splitted[0], ":".join(splitted[1:-1]), splitted[-1], ) if cmd == "PROBE": continue if rtype not in _CLEANUP_FUNCS: raise ValueError( f"Cannot register {name} for automatic cleanup: " f"unknown resource type ({rtype}). Resource type " "should be one of the following: " f"{list(_CLEANUP_FUNCS.keys())}" ) if cmd == "REGISTER": if name not in registry[rtype]: registry[rtype][name] = 1 else: registry[rtype][name] += 1 if verbose: util.debug( "[ResourceTracker] incremented refcount of " f"{rtype} {name} " f"(current {registry[rtype][name]})" ) elif cmd == "UNREGISTER": del registry[rtype][name] if verbose: util.debug( f"[ResourceTracker] unregister {name} {rtype}: " f"registry({len(registry)})" ) elif cmd == "MAYBE_UNLINK": registry[rtype][name] -= 1 if verbose: util.debug( "[ResourceTracker] decremented refcount of " f"{rtype} {name} " f"(current {registry[rtype][name]})" ) if registry[rtype][name] == 0: del registry[rtype][name] try: if verbose: util.debug( f"[ResourceTracker] unlink {name}" ) _CLEANUP_FUNCS[rtype](name) except Exception as e: warnings.warn( f"resource_tracker: {name}: {e!r}" ) else: raise RuntimeError(f"unrecognized command {cmd!r}") except BaseException: try: sys.excepthook(*sys.exc_info()) except BaseException: pass finally: # all processes have terminated; cleanup any remaining resources def _unlink_resources(rtype_registry, rtype): if rtype_registry: try: warnings.warn( "resource_tracker: There appear to be " f"{len(rtype_registry)} leaked {rtype} objects to " "clean up at shutdown" ) except Exception: pass for name in rtype_registry: # For some reason the process which created and registered this # resource has failed to unregister it. Presumably it has # died. We therefore clean it up. try: _CLEANUP_FUNCS[rtype](name) if verbose: util.debug(f"[ResourceTracker] unlink {name}") except Exception as e: warnings.warn(f"resource_tracker: {name}: {e!r}") for rtype, rtype_registry in registry.items(): if rtype == "folder": continue else: _unlink_resources(rtype_registry, rtype) # The default cleanup routine for folders deletes everything inside # those folders recursively, which can include other resources tracked # by the resource tracker). To limit the risk of the resource tracker # attempting to delete twice a resource (once as part of a tracked # folder, and once as a resource), we delete the folders after all # other resource types. if "folder" in registry: _unlink_resources(registry["folder"], "folder") if verbose: util.debug("resource tracker shut down") # # Start a program with only specified fds kept open # def spawnv_passfds(path, args, passfds): passfds = sorted(passfds) if sys.platform != "win32": errpipe_read, errpipe_write = os.pipe() try: from .reduction import _mk_inheritable from .fork_exec import fork_exec _pass = [_mk_inheritable(fd) for fd in passfds] return fork_exec(args, _pass) finally: os.close(errpipe_read) os.close(errpipe_write) else: cmd = " ".join(f'"{x}"' for x in args) try: _, ht, pid, _ = _winapi.CreateProcess( path, cmd, None, None, True, 0, None, None, None ) _winapi.CloseHandle(ht) except BaseException: pass return pid PKaZZZ*GN##&joblib/externals/loky/backend/spawn.py############################################################################### # Prepares and processes the data to setup the new process environment # # author: Thomas Moreau and Olivier Grisel # # adapted from multiprocessing/spawn.py (17/02/2017) # * Improve logging data # import os import sys import runpy import textwrap import types from multiprocessing import process, util if sys.platform != "win32": WINEXE = False WINSERVICE = False else: import msvcrt from multiprocessing.reduction import duplicate WINEXE = sys.platform == "win32" and getattr(sys, "frozen", False) WINSERVICE = sys.executable.lower().endswith("pythonservice.exe") if WINSERVICE: _python_exe = os.path.join(sys.exec_prefix, "python.exe") else: _python_exe = sys.executable def get_executable(): return _python_exe def _check_not_importing_main(): if getattr(process.current_process(), "_inheriting", False): raise RuntimeError( textwrap.dedent( """\ An attempt has been made to start a new process before the current process has finished its bootstrapping phase. This probably means that you are not using fork to start your child processes and you have forgotten to use the proper idiom in the main module: if __name__ == '__main__': freeze_support() ... The "freeze_support()" line can be omitted if the program is not going to be frozen to produce an executable.""" ) ) def get_preparation_data(name, init_main_module=True): """Return info about parent needed by child to unpickle process object.""" _check_not_importing_main() d = dict( log_to_stderr=util._log_to_stderr, authkey=bytes(process.current_process().authkey), name=name, sys_argv=sys.argv, orig_dir=process.ORIGINAL_DIR, dir=os.getcwd(), ) # Send sys_path and make sure the current directory will not be changed d["sys_path"] = [p if p != "" else process.ORIGINAL_DIR for p in sys.path] # Make sure to pass the information if the multiprocessing logger is active if util._logger is not None: d["log_level"] = util._logger.getEffectiveLevel() if util._logger.handlers: h = util._logger.handlers[0] d["log_fmt"] = h.formatter._fmt # Tell the child how to communicate with the resource_tracker from .resource_tracker import _resource_tracker _resource_tracker.ensure_running() d["tracker_args"] = {"pid": _resource_tracker._pid} if sys.platform == "win32": d["tracker_args"]["fh"] = msvcrt.get_osfhandle(_resource_tracker._fd) else: d["tracker_args"]["fd"] = _resource_tracker._fd if sys.version_info >= (3, 8) and os.name == "posix": # joblib/loky#242: allow loky processes to retrieve the resource # tracker of their parent in case the child processes depickles # shared_memory objects, that are still tracked by multiprocessing's # resource_tracker by default. # XXX: this is a workaround that may be error prone: in the future, it # would be better to have loky subclass multiprocessing's shared_memory # to force registration of shared_memory segments via loky's # resource_tracker. from multiprocessing.resource_tracker import ( _resource_tracker as mp_resource_tracker, ) # multiprocessing's resource_tracker must be running before loky # process is created (othewise the child won't be able to use it if it # is created later on) mp_resource_tracker.ensure_running() d["mp_tracker_args"] = { "fd": mp_resource_tracker._fd, "pid": mp_resource_tracker._pid, } # Figure out whether to initialise main in the subprocess as a module # or through direct execution (or to leave it alone entirely) if init_main_module: main_module = sys.modules["__main__"] try: main_mod_name = getattr(main_module.__spec__, "name", None) except BaseException: main_mod_name = None if main_mod_name is not None: d["init_main_from_name"] = main_mod_name elif sys.platform != "win32" or (not WINEXE and not WINSERVICE): main_path = getattr(main_module, "__file__", None) if main_path is not None: if ( not os.path.isabs(main_path) and process.ORIGINAL_DIR is not None ): main_path = os.path.join(process.ORIGINAL_DIR, main_path) d["init_main_from_path"] = os.path.normpath(main_path) return d # # Prepare current process # old_main_modules = [] def prepare(data, parent_sentinel=None): """Try to get current process ready to unpickle process object.""" if "name" in data: process.current_process().name = data["name"] if "authkey" in data: process.current_process().authkey = data["authkey"] if "log_to_stderr" in data and data["log_to_stderr"]: util.log_to_stderr() if "log_level" in data: util.get_logger().setLevel(data["log_level"]) if "log_fmt" in data: import logging util.get_logger().handlers[0].setFormatter( logging.Formatter(data["log_fmt"]) ) if "sys_path" in data: sys.path = data["sys_path"] if "sys_argv" in data: sys.argv = data["sys_argv"] if "dir" in data: os.chdir(data["dir"]) if "orig_dir" in data: process.ORIGINAL_DIR = data["orig_dir"] if "mp_tracker_args" in data: from multiprocessing.resource_tracker import ( _resource_tracker as mp_resource_tracker, ) mp_resource_tracker._fd = data["mp_tracker_args"]["fd"] mp_resource_tracker._pid = data["mp_tracker_args"]["pid"] if "tracker_args" in data: from .resource_tracker import _resource_tracker _resource_tracker._pid = data["tracker_args"]["pid"] if sys.platform == "win32": handle = data["tracker_args"]["fh"] handle = duplicate(handle, source_process=parent_sentinel) _resource_tracker._fd = msvcrt.open_osfhandle(handle, os.O_RDONLY) else: _resource_tracker._fd = data["tracker_args"]["fd"] if "init_main_from_name" in data: _fixup_main_from_name(data["init_main_from_name"]) elif "init_main_from_path" in data: _fixup_main_from_path(data["init_main_from_path"]) # Multiprocessing module helpers to fix up the main module in # spawned subprocesses def _fixup_main_from_name(mod_name): # __main__.py files for packages, directories, zip archives, etc, run # their "main only" code unconditionally, so we don't even try to # populate anything in __main__, nor do we make any changes to # __main__ attributes current_main = sys.modules["__main__"] if mod_name == "__main__" or mod_name.endswith(".__main__"): return # If this process was forked, __main__ may already be populated if getattr(current_main.__spec__, "name", None) == mod_name: return # Otherwise, __main__ may contain some non-main code where we need to # support unpickling it properly. We rerun it as __mp_main__ and make # the normal __main__ an alias to that old_main_modules.append(current_main) main_module = types.ModuleType("__mp_main__") main_content = runpy.run_module( mod_name, run_name="__mp_main__", alter_sys=True ) main_module.__dict__.update(main_content) sys.modules["__main__"] = sys.modules["__mp_main__"] = main_module def _fixup_main_from_path(main_path): # If this process was forked, __main__ may already be populated current_main = sys.modules["__main__"] # Unfortunately, the main ipython launch script historically had no # "if __name__ == '__main__'" guard, so we work around that # by treating it like a __main__.py file # See https://github.com/ipython/ipython/issues/4698 main_name = os.path.splitext(os.path.basename(main_path))[0] if main_name == "ipython": return # Otherwise, if __file__ already has the setting we expect, # there's nothing more to do if getattr(current_main, "__file__", None) == main_path: return # If the parent process has sent a path through rather than a module # name we assume it is an executable script that may contain # non-main code that needs to be executed old_main_modules.append(current_main) main_module = types.ModuleType("__mp_main__") main_content = runpy.run_path(main_path, run_name="__mp_main__") main_module.__dict__.update(main_content) sys.modules["__main__"] = sys.modules["__mp_main__"] = main_module PKaZZZ�� �-�-,joblib/externals/loky/backend/synchronize.py############################################################################### # Synchronization primitives based on our SemLock implementation # # author: Thomas Moreau and Olivier Grisel # # adapted from multiprocessing/synchronize.py (17/02/2017) # * Remove ctx argument for compatibility reason # * Registers a cleanup function with the loky resource_tracker to remove the # semaphore when the process dies instead. # # TODO: investigate which Python version is required to be able to use # multiprocessing.resource_tracker and therefore multiprocessing.synchronize # instead of a loky-specific fork. import os import sys import tempfile import threading import _multiprocessing from time import time as _time from multiprocessing import process, util from multiprocessing.context import assert_spawning from . import resource_tracker __all__ = [ "Lock", "RLock", "Semaphore", "BoundedSemaphore", "Condition", "Event", ] # Try to import the mp.synchronize module cleanly, if it fails # raise ImportError for platforms lacking a working sem_open implementation. # See issue 3770 try: from _multiprocessing import SemLock as _SemLock from _multiprocessing import sem_unlink except ImportError: raise ImportError( "This platform lacks a functioning sem_open" " implementation, therefore, the required" " synchronization primitives needed will not" " function, see issue 3770." ) # # Constants # RECURSIVE_MUTEX, SEMAPHORE = range(2) SEM_VALUE_MAX = _multiprocessing.SemLock.SEM_VALUE_MAX # # Base class for semaphores and mutexes; wraps `_multiprocessing.SemLock` # class SemLock: _rand = tempfile._RandomNameSequence() def __init__(self, kind, value, maxvalue, name=None): # unlink_now is only used on win32 or when we are using fork. unlink_now = False if name is None: # Try to find an unused name for the SemLock instance. for _ in range(100): try: self._semlock = _SemLock( kind, value, maxvalue, SemLock._make_name(), unlink_now ) except FileExistsError: # pragma: no cover pass else: break else: # pragma: no cover raise FileExistsError("cannot find name for semaphore") else: self._semlock = _SemLock(kind, value, maxvalue, name, unlink_now) self.name = name util.debug( f"created semlock with handle {self._semlock.handle} and name " f'"{self.name}"' ) self._make_methods() def _after_fork(obj): obj._semlock._after_fork() util.register_after_fork(self, _after_fork) # When the object is garbage collected or the # process shuts down we unlink the semaphore name resource_tracker.register(self._semlock.name, "semlock") util.Finalize( self, SemLock._cleanup, (self._semlock.name,), exitpriority=0 ) @staticmethod def _cleanup(name): try: sem_unlink(name) except FileNotFoundError: # Already unlinked, possibly by user code: ignore and make sure to # unregister the semaphore from the resource tracker. pass finally: resource_tracker.unregister(name, "semlock") def _make_methods(self): self.acquire = self._semlock.acquire self.release = self._semlock.release def __enter__(self): return self._semlock.acquire() def __exit__(self, *args): return self._semlock.release() def __getstate__(self): assert_spawning(self) sl = self._semlock h = sl.handle return (h, sl.kind, sl.maxvalue, sl.name) def __setstate__(self, state): self._semlock = _SemLock._rebuild(*state) util.debug( f'recreated blocker with handle {state[0]!r} and name "{state[3]}"' ) self._make_methods() @staticmethod def _make_name(): # OSX does not support long names for semaphores return f"/loky-{os.getpid()}-{next(SemLock._rand)}" # # Semaphore # class Semaphore(SemLock): def __init__(self, value=1): SemLock.__init__(self, SEMAPHORE, value, SEM_VALUE_MAX) def get_value(self): if sys.platform == "darwin": raise NotImplementedError("OSX does not implement sem_getvalue") return self._semlock._get_value() def __repr__(self): try: value = self._semlock._get_value() except Exception: value = "unknown" return f"<{self.__class__.__name__}(value={value})>" # # Bounded semaphore # class BoundedSemaphore(Semaphore): def __init__(self, value=1): SemLock.__init__(self, SEMAPHORE, value, value) def __repr__(self): try: value = self._semlock._get_value() except Exception: value = "unknown" return ( f"<{self.__class__.__name__}(value={value}, " f"maxvalue={self._semlock.maxvalue})>" ) # # Non-recursive lock # class Lock(SemLock): def __init__(self): super().__init__(SEMAPHORE, 1, 1) def __repr__(self): try: if self._semlock._is_mine(): name = process.current_process().name if threading.current_thread().name != "MainThread": name = f"{name}|{threading.current_thread().name}" elif self._semlock._get_value() == 1: name = "None" elif self._semlock._count() > 0: name = "SomeOtherThread" else: name = "SomeOtherProcess" except Exception: name = "unknown" return f"<{self.__class__.__name__}(owner={name})>" # # Recursive lock # class RLock(SemLock): def __init__(self): super().__init__(RECURSIVE_MUTEX, 1, 1) def __repr__(self): try: if self._semlock._is_mine(): name = process.current_process().name if threading.current_thread().name != "MainThread": name = f"{name}|{threading.current_thread().name}" count = self._semlock._count() elif self._semlock._get_value() == 1: name, count = "None", 0 elif self._semlock._count() > 0: name, count = "SomeOtherThread", "nonzero" else: name, count = "SomeOtherProcess", "nonzero" except Exception: name, count = "unknown", "unknown" return f"<{self.__class__.__name__}({name}, {count})>" # # Condition variable # class Condition: def __init__(self, lock=None): self._lock = lock or RLock() self._sleeping_count = Semaphore(0) self._woken_count = Semaphore(0) self._wait_semaphore = Semaphore(0) self._make_methods() def __getstate__(self): assert_spawning(self) return ( self._lock, self._sleeping_count, self._woken_count, self._wait_semaphore, ) def __setstate__(self, state): ( self._lock, self._sleeping_count, self._woken_count, self._wait_semaphore, ) = state self._make_methods() def __enter__(self): return self._lock.__enter__() def __exit__(self, *args): return self._lock.__exit__(*args) def _make_methods(self): self.acquire = self._lock.acquire self.release = self._lock.release def __repr__(self): try: num_waiters = ( self._sleeping_count._semlock._get_value() - self._woken_count._semlock._get_value() ) except Exception: num_waiters = "unknown" return f"<{self.__class__.__name__}({self._lock}, {num_waiters})>" def wait(self, timeout=None): assert ( self._lock._semlock._is_mine() ), "must acquire() condition before using wait()" # indicate that this thread is going to sleep self._sleeping_count.release() # release lock count = self._lock._semlock._count() for _ in range(count): self._lock.release() try: # wait for notification or timeout return self._wait_semaphore.acquire(True, timeout) finally: # indicate that this thread has woken self._woken_count.release() # reacquire lock for _ in range(count): self._lock.acquire() def notify(self): assert self._lock._semlock._is_mine(), "lock is not owned" assert not self._wait_semaphore.acquire(False) # to take account of timeouts since last notify() we subtract # woken_count from sleeping_count and rezero woken_count while self._woken_count.acquire(False): res = self._sleeping_count.acquire(False) assert res if self._sleeping_count.acquire(False): # try grabbing a sleeper self._wait_semaphore.release() # wake up one sleeper self._woken_count.acquire() # wait for the sleeper to wake # rezero _wait_semaphore in case a timeout just happened self._wait_semaphore.acquire(False) def notify_all(self): assert self._lock._semlock._is_mine(), "lock is not owned" assert not self._wait_semaphore.acquire(False) # to take account of timeouts since last notify*() we subtract # woken_count from sleeping_count and rezero woken_count while self._woken_count.acquire(False): res = self._sleeping_count.acquire(False) assert res sleepers = 0 while self._sleeping_count.acquire(False): self._wait_semaphore.release() # wake up one sleeper sleepers += 1 if sleepers: for _ in range(sleepers): self._woken_count.acquire() # wait for a sleeper to wake # rezero wait_semaphore in case some timeouts just happened while self._wait_semaphore.acquire(False): pass def wait_for(self, predicate, timeout=None): result = predicate() if result: return result if timeout is not None: endtime = _time() + timeout else: endtime = None waittime = None while not result: if endtime is not None: waittime = endtime - _time() if waittime <= 0: break self.wait(waittime) result = predicate() return result # # Event # class Event: def __init__(self): self._cond = Condition(Lock()) self._flag = Semaphore(0) def is_set(self): with self._cond: if self._flag.acquire(False): self._flag.release() return True return False def set(self): with self._cond: self._flag.acquire(False) self._flag.release() self._cond.notify_all() def clear(self): with self._cond: self._flag.acquire(False) def wait(self, timeout=None): with self._cond: if self._flag.acquire(False): self._flag.release() else: self._cond.wait(timeout) if self._flag.acquire(False): self._flag.release() return True return False PKaZZZ1��}}&joblib/externals/loky/backend/utils.pyimport os import sys import time import errno import signal import warnings import subprocess import traceback try: import psutil except ImportError: psutil = None def kill_process_tree(process, use_psutil=True): """Terminate process and its descendants with SIGKILL""" if use_psutil and psutil is not None: _kill_process_tree_with_psutil(process) else: _kill_process_tree_without_psutil(process) def recursive_terminate(process, use_psutil=True): warnings.warn( "recursive_terminate is deprecated in loky 3.2, use kill_process_tree" "instead", DeprecationWarning, ) kill_process_tree(process, use_psutil=use_psutil) def _kill_process_tree_with_psutil(process): try: descendants = psutil.Process(process.pid).children(recursive=True) except psutil.NoSuchProcess: return # Kill the descendants in reverse order to avoid killing the parents before # the descendant in cases where there are more processes nested. for descendant in descendants[::-1]: try: descendant.kill() except psutil.NoSuchProcess: pass try: psutil.Process(process.pid).kill() except psutil.NoSuchProcess: pass process.join() def _kill_process_tree_without_psutil(process): """Terminate a process and its descendants.""" try: if sys.platform == "win32": _windows_taskkill_process_tree(process.pid) else: _posix_recursive_kill(process.pid) except Exception: # pragma: no cover details = traceback.format_exc() warnings.warn( "Failed to kill subprocesses on this platform. Please install" "psutil: https://github.com/giampaolo/psutil\n" f"Details:\n{details}" ) # In case we cannot introspect or kill the descendants, we fall back to # only killing the main process. # # Note: on Windows, process.kill() is an alias for process.terminate() # which in turns calls the Win32 API function TerminateProcess(). process.kill() process.join() def _windows_taskkill_process_tree(pid): # On windows, the taskkill function with option `/T` terminate a given # process pid and its children. try: subprocess.check_output( ["taskkill", "/F", "/T", "/PID", str(pid)], stderr=None ) except subprocess.CalledProcessError as e: # In Windows, taskkill returns 128, 255 for no process found. if e.returncode not in [128, 255]: # Let's raise to let the caller log the error details in a # warning and only kill the root process. raise # pragma: no cover def _kill(pid): # Not all systems (e.g. Windows) have a SIGKILL, but the C specification # mandates a SIGTERM signal. While Windows is handled specifically above, # let's try to be safe for other hypothetic platforms that only have # SIGTERM without SIGKILL. kill_signal = getattr(signal, "SIGKILL", signal.SIGTERM) try: os.kill(pid, kill_signal) except OSError as e: # if OSError is raised with [Errno 3] no such process, the process # is already terminated, else, raise the error and let the top # level function raise a warning and retry to kill the process. if e.errno != errno.ESRCH: raise # pragma: no cover def _posix_recursive_kill(pid): """Recursively kill the descendants of a process before killing it.""" try: children_pids = subprocess.check_output( ["pgrep", "-P", str(pid)], stderr=None, text=True ) except subprocess.CalledProcessError as e: # `ps` returns 1 when no child process has been found if e.returncode == 1: children_pids = "" else: raise # pragma: no cover # Decode the result, split the cpid and remove the trailing line for cpid in children_pids.splitlines(): cpid = int(cpid) _posix_recursive_kill(cpid) _kill(pid) def get_exitcodes_terminated_worker(processes): """Return a formatted string with the exitcodes of terminated workers. If necessary, wait (up to .25s) for the system to correctly set the exitcode of one terminated worker. """ patience = 5 # Catch the exitcode of the terminated workers. There should at least be # one. If not, wait a bit for the system to correctly set the exitcode of # the terminated worker. exitcodes = [ p.exitcode for p in list(processes.values()) if p.exitcode is not None ] while not exitcodes and patience > 0: patience -= 1 exitcodes = [ p.exitcode for p in list(processes.values()) if p.exitcode is not None ] time.sleep(0.05) return _format_exitcodes(exitcodes) def _format_exitcodes(exitcodes): """Format a list of exit code with names of the signals if possible""" str_exitcodes = [ f"{_get_exitcode_name(e)}({e})" for e in exitcodes if e is not None ] return "{" + ", ".join(str_exitcodes) + "}" def _get_exitcode_name(exitcode): if sys.platform == "win32": # The exitcode are unreliable on windows (see bpo-31863). # For this case, return UNKNOWN return "UNKNOWN" if exitcode < 0: try: import signal return signal.Signals(-exitcode).name except ValueError: return "UNKNOWN" elif exitcode != 255: # The exitcode are unreliable on forkserver were 255 is always returned # (see bpo-30589). For this case, return UNKNOWN return "EXIT" return "UNKNOWN" PKaZZZ�����"joblib-1.4.0.dist-info/LICENSE.txtBSD 3-Clause License Copyright (c) 2008-2021, The joblib developers. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. PKaZZZ|�6w��joblib-1.4.0.dist-info/METADATAMetadata-Version: 2.2 Name: joblib Version: 1.4.0 Summary: Lightweight pipelining with Python functions Author-email: Gael Varoquaux <gael.varoquaux@normalesup.org> License: BSD 3-Clause Project-URL: Homepage, https://joblib.readthedocs.io Project-URL: Source, https://github.com/joblib/joblib Platform: any Classifier: Development Status :: 5 - Production/Stable Classifier: Environment :: Console Classifier: Intended Audience :: Developers Classifier: Intended Audience :: Science/Research Classifier: Intended Audience :: Education Classifier: License :: OSI Approved :: BSD License Classifier: Operating System :: OS Independent Classifier: Programming Language :: Python :: 3 Classifier: Programming Language :: Python :: 3.8 Classifier: Programming Language :: Python :: 3.9 Classifier: Programming Language :: Python :: 3.10 Classifier: Programming Language :: Python :: 3.11 Classifier: Programming Language :: Python :: 3.12 Classifier: Topic :: Scientific/Engineering Classifier: Topic :: Utilities Classifier: Topic :: Software Development :: Libraries Requires-Python: >=3.8 Description-Content-Type: text/x-rst License-File: LICENSE.txt |PyPi| |Azure| |ReadTheDocs| |Codecov| .. |PyPi| image:: https://badge.fury.io/py/joblib.svg :target: https://badge.fury.io/py/joblib :alt: Joblib version .. |Azure| image:: https://dev.azure.com/joblib/joblib/_apis/build/status/joblib.joblib?branchName=master :target: https://dev.azure.com/joblib/joblib/_build?definitionId=3&_a=summary&branchFilter=40 :alt: Azure CI status .. |ReadTheDocs| image:: https://readthedocs.org/projects/joblib/badge/?version=latest :target: https://joblib.readthedocs.io/en/latest/?badge=latest :alt: Documentation Status .. |Codecov| image:: https://codecov.io/gh/joblib/joblib/branch/master/graph/badge.svg :target: https://codecov.io/gh/joblib/joblib :alt: Codecov coverage The homepage of joblib with user documentation is located on: https://joblib.readthedocs.io Getting the latest code ======================= To get the latest code using git, simply type:: git clone https://github.com/joblib/joblib.git If you don't have git installed, you can download a zip of the latest code: https://github.com/joblib/joblib/archive/refs/heads/master.zip Installing ========== You can use `pip` to install joblib:: pip install joblib from any directory or:: python setup.py install from the source directory. Dependencies ============ - Joblib has no mandatory dependencies besides Python (supported versions are 3.8+). - Joblib has an optional dependency on Numpy (at least version 1.6.1) for array manipulation. - Joblib includes its own vendored copy of `loky <https://github.com/tomMoral/loky>`_ for process management. - Joblib can efficiently dump and load numpy arrays but does not require numpy to be installed. - Joblib has an optional dependency on `python-lz4 <https://pypi.python.org/pypi/lz4>`_ as a faster alternative to zlib and gzip for compressed serialization. - Joblib has an optional dependency on psutil to mitigate memory leaks in parallel worker processes. - Some examples require external dependencies such as pandas. See the instructions in the `Building the docs`_ section for details. Workflow to contribute ====================== To contribute to joblib, first create an account on `github <https://github.com/>`_. Once this is done, fork the `joblib repository <https://github.com/joblib/joblib>`_ to have your own repository, clone it using 'git clone' on the computers where you want to work. Make your changes in your clone, push them to your github account, test them on several computers, and when you are happy with them, send a pull request to the main repository. Running the test suite ====================== To run the test suite, you need the pytest (version >= 3) and coverage modules. Run the test suite using:: pytest joblib from the root of the project. Building the docs ================= To build the docs you need to have sphinx (>=1.4) and some dependencies installed:: pip install -U -r .readthedocs-requirements.txt The docs can then be built with the following command:: make doc The html docs are located in the ``doc/_build/html`` directory. Making a source tarball ======================= To create a source tarball, eg for packaging or distributing, run the following command:: python setup.py sdist The tarball will be created in the `dist` directory. This command will compile the docs, and the resulting tarball can be installed with no extra dependencies than the Python standard library. You will need setuptool and sphinx. Making a release and uploading it to PyPI ========================================= This command is only run by project manager, to make a release, and upload in to PyPI:: python setup.py sdist bdist_wheel twine upload dist/* Note that the documentation should automatically get updated at each git push. If that is not the case, try building th doc locally and resolve any doc build error (in particular when running the examples). Updating the changelog ====================== Changes are listed in the CHANGES.rst file. They must be manually updated but, the following git command may be used to generate the lines:: git log --abbrev-commit --date=short --no-merges --sparse PKaZZZ̶��[[joblib-1.4.0.dist-info/WHEELWheel-Version: 1.0 Generator: setuptools (75.8.1) Root-Is-Purelib: true Tag: py3-none-any PKaZZZX )$joblib-1.4.0.dist-info/top_level.txtjoblib PKaZZZ?}\ryyjoblib-1.4.0.dist-info/RECORDjoblib/__init__.py,sha256=ytsTJjbnDLtKYZ1il4QVYU8ReyTdKgKqd3zO_2FTv7Y,5132 joblib/_cloudpickle_wrapper.py,sha256=-PBMUqgZCfd5EMaKn5FCQhWKiAJfbq4i2o6Z6KZ1ynE,417 joblib/_dask.py,sha256=IhFjN6oMQVIcLC7bLHnA7KgO7nnEp7p6P4JH12934J4,13313 joblib/_memmapping_reducer.py,sha256=4xclMWTgI5l-C6OFyt6FvamH-ToJu3DmopAXwt7a9F4,28092 joblib/_multiprocessing_helpers.py,sha256=t7wIXfrLfzqFXjOeOYs4JP45tptxmYm5_yE8ylIRbR8,1925 joblib/_parallel_backends.py,sha256=82qX4mJ5eHz4i0e5gbdHgvzST3P6LJ59hpfee0IyZCQ,25489 joblib/_store_backends.py,sha256=PaoeHo4Mr7idPI3MvX766OqBQ_y_WkG_oZbE4MjbdKw,16683 joblib/_utils.py,sha256=BBUs4ZHpDRxpgTsdrZSyBb39MqacM6JauI3dTRmnHm4,2076 joblib/backports.py,sha256=aGh0cjs_xMhO2ym7RprpDjCBudiPtDhgD1vf5YMbMaI,5361 joblib/compressor.py,sha256=WwRzsQhdQp0lbQvvEbAcaevCOCM2_Qyv_HJ4PVHtobQ,19768 joblib/disk.py,sha256=PxUC63dBG2O1GriL1SLskHUjz7XzR-y6rqKEJHEY0jA,4389 joblib/executor.py,sha256=PiaOwENhecRVnOdvHZLwGsr-RMKfk_F_Noy8y7nntJY,5136 joblib/func_inspect.py,sha256=Cwei03uwnZKJ9mbGmdCSjVGgq2_1lJNJSkeUn1GTvSo,14204 joblib/hashing.py,sha256=4X9OOofkfDQr3N8NZKTsMOKWr8IiIV0kjBwqCUJCej4,10535 joblib/logger.py,sha256=meT-hFPTZukfBRkeyCVCxhssPSr668_R5Nn25S-iXtc,5463 joblib/memory.py,sha256=SDxiok3TiQOqy7Cd6A6yxrtWCZADWhMIiiWsBe97QRA,45990 joblib/numpy_pickle.py,sha256=5_L7EbPg94T3iSODEdkikJNj_z2qvpZYaGei9HlMBWU,26886 joblib/numpy_pickle_compat.py,sha256=U7zVNNF03an_7AgHOxhTxcOSbLJTWcGsnV_xbT3vRdY,8547 joblib/numpy_pickle_utils.py,sha256=KccSp_MhMFsV41Mw9pSijchtGOCympDaHWH0VpIUeSs,8723 joblib/parallel.py,sha256=foh2ez7ep8oIS5QInXU6qRSZ4xWWY_AeZjzDVDIOppc,84579 joblib/pool.py,sha256=7jhFg7_qIuBbJ2URbKvyZtET9AxRKaYrYiBSes1VFxo,14411 joblib/testing.py,sha256=6i2ctsokVXohLBhc1dXIZc2TiQDRiB-glGKFbfZDIqE,3093 joblib/externals/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0 joblib/externals/cloudpickle/__init__.py,sha256=vb2JCOn1EpLUdVyPe1ESyhLymcvh-Rk3ISHJ-52aDLw,308 joblib/externals/cloudpickle/cloudpickle.py,sha256=APCGMuIfVpWcelGsLlo2zRmwKRloaoiznQEOAoEWH9Y,55283 joblib/externals/cloudpickle/cloudpickle_fast.py,sha256=1GqUD4nLKsv0vv9ty2La3eVLyeWNrPFlhUCN-aNI-30,322 joblib/externals/loky/__init__.py,sha256=T20hgxG9YPps-AhsElBMzIJD73q0h3x0Hys49alTvq8,1104 joblib/externals/loky/_base.py,sha256=LsQnEoKWKGhdeqGhMc68Aqwz4MrTnEs20KAYbFiUHzo,1057 joblib/externals/loky/cloudpickle_wrapper.py,sha256=9VfrXIfHiJcoXDqwgaHWbRsWipVA23oRJaxnXzSu7GM,3608 joblib/externals/loky/initializers.py,sha256=dtKtRsJUmVwiJu0yZ-Ih0m8PvW_MxmouG7mShEcsStc,2567 joblib/externals/loky/process_executor.py,sha256=eP5eVZFUsYPDhN91cxRHl23uEfqNWDeDQjrdNDB4c3o,51050 joblib/externals/loky/reusable_executor.py,sha256=XVxLGMhCDij8CU6BDHbYKPxn8lG-rnqXaIfxO2nXGXg,10305 joblib/externals/loky/backend/__init__.py,sha256=Ix9KThV1CYk7-M5OQnJ_A_JrrrWJ-Jowa-HMMeGbp18,312 joblib/externals/loky/backend/_posix_reduction.py,sha256=xgCSrIaLI0k_MI0XNOBSp5e1ox1WN9idgrWbkWpMUr4,1776 joblib/externals/loky/backend/_win_reduction.py,sha256=WmNB0NXtyJ_o_WzfPUEGh5dPhXIeI6FkEnFNXUxO2ws,683 joblib/externals/loky/backend/context.py,sha256=GGBUGp4QDx1qvBuWDvyOSjNWYA79shxgAagsrcxA50E,13654 joblib/externals/loky/backend/fork_exec.py,sha256=c3I22U_ewtT1T5Xn65SUXHrftspvllrGezGiv5KSRQY,1186 joblib/externals/loky/backend/popen_loky_posix.py,sha256=ZFFs6H7Xp3CCQDE4oqmd_flWday6EdtlQ34Hkpa2PFQ,5580 joblib/externals/loky/backend/popen_loky_win32.py,sha256=bYkhRA0w8qUcYFwoezeGwcnlCocEdheWXc6SZ-_rVxo,5325 joblib/externals/loky/backend/process.py,sha256=4-Y94EoIrg4btsjTNxUBHAHhR96Nrugn_7_PGL6aU50,2018 joblib/externals/loky/backend/queues.py,sha256=eETFvbPHwKfdoYyOgNQCyKq_Zlm-lzH3fwwpUIh-_4U,7322 joblib/externals/loky/backend/reduction.py,sha256=CRu922R8xOxog2Snhop7y6fN1fPX9_h110brrICwZUE,7063 joblib/externals/loky/backend/resource_tracker.py,sha256=421689XAmmxmNXktfkhNHNERIY3LbAcmWAsmRHPNUjg,14498 joblib/externals/loky/backend/spawn.py,sha256=PVOHs8ou7IPcISb7t_Pp86FnUtPUw_KUAdxmDHOrAaU,8962 joblib/externals/loky/backend/synchronize.py,sha256=nlDwBoLZB93m_l55qfZM_Ql-4L84PSYimoQqt5TzpDk,11768 joblib/externals/loky/backend/utils.py,sha256=RVsxqyET4TJdbjc9uUHJmfhlQ2v4Uq-fiT_5b5rfC0s,5757 joblib-1.4.0.dist-info/LICENSE.txt,sha256=QmEpEcGHLF5LQ_auDo7llGfNNQMyJBz3LOkGQCZPrmo,1527 joblib-1.4.0.dist-info/METADATA,sha256=VrfUvVg8jZ4SgGrqgqGMS9aoM7clBN-bpgej29zgUNA,5370 joblib-1.4.0.dist-info/WHEEL,sha256=nn6H5-ilmfVryoAQl3ZQ2l8SH5imPWFpm1A5FgEuFV4,91 joblib-1.4.0.dist-info/top_level.txt,sha256=P0LsoZ45gBL7ckL4lqQt7tdbrHD4xlVYhffmhHeeT_U,7 joblib-1.4.0.dist-info/RECORD,, PKaZZZ)�O  �joblib/__init__.pyPKaZZZGy���<joblib/_cloudpickle_wrapper.pyPKaZZZ��V44�joblib/_dask.pyPKaZZZ~�`�m�m�GJjoblib/_memmapping_reducer.pyPKaZZZ��1���"�>�joblib/_multiprocessing_helpers.pyPKaZZZ���c�c��joblib/_parallel_backends.pyPKaZZZD� p+A+A��#joblib/_store_backends.pyPKaZZZ��Q��0ejoblib/_utils.pyPKaZZZ6&K\���zmjoblib/backports.pyPKaZZZ�bxv8M8M���joblib/compressor.pyPKaZZZm� %%��joblib/disk.pyPKaZZZ�/�W�joblib/executor.pyPKaZZZd}�|7|7���joblib/func_inspect.pyPKaZZZ���&')')�G-joblib/hashing.pyPKaZZZ��b WW��Vjoblib/logger.pyPKaZZZ�Jb������"ljoblib/memory.pyPKaZZZju�ii��joblib/numpy_pickle.pyPKaZZZҁK�c!c!�0�joblib/numpy_pickle_compat.pyPKaZZZ{�8<""�Ϊjoblib/numpy_pickle_utils.pyPKaZZZ���cJcJ��joblib/parallel.pyPKaZZZ��%K8K8��joblib/pool.pyPKaZZZ��  �%Pjoblib/testing.pyPKaZZZ�i\joblib/externals/__init__.pyPKaZZZ�e>�44(��\joblib/externals/cloudpickle/__init__.pyPKaZZZ��&�����+�^joblib/externals/cloudpickle/cloudpickle.pyPKaZZZ�qM�BB0�Y6joblib/externals/cloudpickle/cloudpickle_fast.pyPKaZZZ�=�PP!��7joblib/externals/loky/__init__.pyPKaZZZ?�t!!�x<joblib/externals/loky/_base.pyPKaZZZ=ʍ�,��@joblib/externals/loky/cloudpickle_wrapper.pyPKaZZZ�g�$  %�7Ojoblib/externals/loky/initializers.pyPKaZZZbߊj�j�)��Yjoblib/externals/loky/process_executor.pyPKaZZZHe�eA(A(*�2!joblib/externals/loky/reusable_executor.pyPKaZZZ��J�88)��Ijoblib/externals/loky/backend/__init__.pyPKaZZZ�$��1�:Kjoblib/externals/loky/backend/_posix_reduction.pyPKaZZZj�gܫ�/�yRjoblib/externals/loky/backend/_win_reduction.pyPKaZZZ����V5V5(�qUjoblib/externals/loky/backend/context.pyPKaZZZ��A��*� �joblib/externals/loky/backend/fork_exec.pyPKaZZZB�4j��1���joblib/externals/loky/backend/popen_loky_posix.pyPKaZZZ�����1��joblib/externals/loky/backend/popen_loky_win32.pyPKaZZZ��O��(�.�joblib/externals/loky/backend/process.pyPKaZZZ���ۚ�'�V�joblib/externals/loky/backend/queues.pyPKaZZZ�Vߗ�*�5�joblib/externals/loky/backend/reduction.pyPKaZZZ��f(�8�81��joblib/externals/loky/backend/resource_tracker.pyPKaZZZ*GN##&�5joblib/externals/loky/backend/spawn.pyPKaZZZ�� �-�-,�KXjoblib/externals/loky/backend/synchronize.pyPKaZZZ1��}}&���joblib/externals/loky/backend/utils.pyPKaZZZ�����"�N�joblib-1.4.0.dist-info/LICENSE.txtPKaZZZ|�6w�����joblib-1.4.0.dist-info/METADATAPKaZZZ̶��[[���joblib-1.4.0.dist-info/WHEELPKaZZZX )$�Q�joblib-1.4.0.dist-info/top_level.txtPKaZZZ?}\ryy���joblib-1.4.0.dist-info/RECORDPK33zN�
Memory