# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. # -------------------------------------------------------------------------- import logging from typing import Optional from fusion_attention_sam2 import FusionMultiHeadAttentionSam2 from fusion_layernorm import FusionLayerNormalizationNCHW from fusion_options import FusionOptions from import_utils import is_installed from onnx import ModelProto from onnx_model_bert import BertOnnxModel logger = logging.getLogger(__name__) class Sam2OnnxModel(BertOnnxModel): def __init__(self, model: ModelProto, num_heads: int = 0, hidden_size: int = 0): """Initialize SAM2 ONNX Model. Args: model (ModelProto): the ONNX model num_heads (int, optional): number of attention heads. Defaults to 0 (detect the parameter automatically). hidden_size (int, optional): hidden dimension. Defaults to 0 (detect the parameter automatically). """ assert (num_heads == 0 and hidden_size == 0) or (num_heads > 0 and hidden_size % num_heads == 0) super().__init__(model, num_heads=num_heads, hidden_size=hidden_size) def postprocess(self): self.prune_graph() self.remove_unused_constant() def fuse_layer_norm(self): super().fuse_layer_norm() fusion = FusionLayerNormalizationNCHW(self) fusion.apply() def fuse_multi_head_attention(self, options: Optional[FusionOptions] = None): mha_fusion = FusionMultiHeadAttentionSam2(self, self.hidden_size, self.num_heads) mha_fusion.apply() def optimize(self, options: Optional[FusionOptions] = None, add_dynamic_axes: bool = False): if is_installed("tqdm"): import tqdm from tqdm.contrib.logging import logging_redirect_tqdm with logging_redirect_tqdm(): steps = 12 progress_bar = tqdm.tqdm(range(steps), initial=0, desc="sam2 fusion") self._optimize(options, progress_bar) else: logger.info("tqdm is not installed. Run optimization without progress bar") self._optimize(options, None) def _optimize(self, options: Optional[FusionOptions] = None, progress_bar=None): if (options is not None) and not options.enable_shape_inference: self.disable_shape_inference() self.utils.remove_identity_nodes() if progress_bar: progress_bar.update(1) # Remove cast nodes that having same data type of input and output based on symbolic shape inference. self.utils.remove_useless_cast_nodes() if progress_bar: progress_bar.update(1) if (options is None) or options.enable_layer_norm: self.fuse_layer_norm() if progress_bar: progress_bar.update(1) if (options is None) or options.enable_gelu: self.fuse_gelu() if progress_bar: progress_bar.update(1) self.fuse_reshape() if progress_bar: progress_bar.update(1) if (options is None) or options.enable_attention: self.fuse_multi_head_attention(options) if progress_bar: progress_bar.update(1) if (options is None) or options.enable_skip_layer_norm: self.fuse_skip_layer_norm() if progress_bar: progress_bar.update(1) self.fuse_shape() if progress_bar: progress_bar.update(1) # Remove reshape nodes that having same shape of input and output based on symbolic shape inference. self.utils.remove_useless_reshape_nodes() if progress_bar: progress_bar.update(1) if (options is None) or options.enable_bias_skip_layer_norm: # Fuse SkipLayerNormalization and Add Bias before it. self.fuse_add_bias_skip_layer_norm() if progress_bar: progress_bar.update(1) if options is not None and options.enable_gelu_approximation: self.gelu_approximation() if progress_bar: progress_bar.update(1) self.postprocess() if progress_bar: progress_bar.update(1) logger.info(f"opset version: {self.get_opset_version()}") def get_fused_operator_statistics(self): """ Returns node count of fused operators. """ op_count = {} ops = [ "MultiHeadAttention", "LayerNormalization", "SkipLayerNormalization", ] for op in ops: nodes = self.get_nodes_by_op_type(op) op_count[op] = len(nodes) logger.info(f"Optimized operators:{op_count}") return op_count
Memory