# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. # -------------------------------------------------------------------------- # This tool measures the inference performance of onnxruntime on BERT-like model with inputs like input_ids, # token_type_ids (optional), and attention_mask (optional). # # If the model does not have exactly three inputs like above, you might need specify names of inputs with # --input_ids_name, --segment_ids_name and --input_mask_name # Example command to run test on batch_size 1 and 2 for a model on GPU: # python bert_perf_test.py --model bert.onnx --batch_size 1 2 --sequence_length 128 --use_gpu --samples 1000 --test_times 1 import argparse import csv import json import multiprocessing import os import random import statistics import timeit from dataclasses import dataclass from datetime import datetime from pathlib import Path from typing import Optional import numpy as np import psutil import torch from bert_test_data import generate_test_data, get_bert_inputs @dataclass class TestSetting: batch_size: int sequence_length: int test_cases: int test_times: int use_gpu: bool use_io_binding: bool provider: str intra_op_num_threads: int seed: int verbose: bool log_severity: int average_sequence_length: int random_sequence_length: bool @dataclass class ModelSetting: model_path: str input_ids_name: str segment_ids_name: str input_mask_name: str opt_level: int input_tuning_results: Optional[str] output_tuning_results: Optional[str] mask_type: int def create_session( model_path, use_gpu, provider, intra_op_num_threads, graph_optimization_level=None, log_severity=2, tuning_results_path=None, ): import onnxruntime onnxruntime.set_default_logger_severity(log_severity) if use_gpu and ("CUDAExecutionProvider" not in onnxruntime.get_available_providers()): print( "Warning: Please install onnxruntime-gpu package instead of onnxruntime, and use a machine with GPU for testing gpu performance." ) if use_gpu: if provider == "dml": execution_providers = ["DmlExecutionProvider", "CPUExecutionProvider"] elif provider == "rocm": execution_providers = ["ROCMExecutionProvider", "CPUExecutionProvider"] elif provider == "migraphx": execution_providers = [ "MIGraphXExecutionProvider", "ROCMExecutionProvider", "CPUExecutionProvider", ] elif provider == "cuda": execution_providers = ["CUDAExecutionProvider", "CPUExecutionProvider"] elif provider == "tensorrt": execution_providers = [ "TensorrtExecutionProvider", "CUDAExecutionProvider", "CPUExecutionProvider", ] else: execution_providers = ["CUDAExecutionProvider", "CPUExecutionProvider"] else: execution_providers = ["CPUExecutionProvider"] sess_options = onnxruntime.SessionOptions() sess_options.log_severity_level = log_severity sess_options.execution_mode = onnxruntime.ExecutionMode.ORT_SEQUENTIAL if graph_optimization_level is None: sess_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL elif graph_optimization_level == 0: sess_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_DISABLE_ALL elif graph_optimization_level == 1: sess_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_BASIC elif graph_optimization_level == 2: sess_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_EXTENDED elif graph_optimization_level == 99: sess_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL else: sess_options.graph_optimization_level = graph_optimization_level if intra_op_num_threads is not None: sess_options.intra_op_num_threads = intra_op_num_threads session = onnxruntime.InferenceSession(model_path, sess_options, providers=execution_providers) if use_gpu: if provider == "dml": assert "DmlExecutionProvider" in session.get_providers() elif provider == "rocm": assert "ROCMExecutionProvider" in session.get_providers() elif provider == "migraphx": assert "MIGraphXExecutionProvider" in session.get_providers() assert "ROCMExecutionProvider" in session.get_providers() elif provider == "cuda": assert "CUDAExecutionProvider" in session.get_providers() elif provider == "tensorrt": assert "TensorrtExecutionProvider" in session.get_providers() assert "CUDAExecutionProvider" in session.get_providers() else: assert "CUDAExecutionProvider" in session.get_providers() else: assert "CPUExecutionProvider" in session.get_providers() if tuning_results_path is not None: with open(tuning_results_path) as f: session.set_tuning_results(json.load(f)) return session def numpy_type(torch_type): type_map = { torch.float32: np.float32, torch.float16: np.float16, torch.int32: np.int32, torch.int64: np.longlong, } return type_map[torch_type] def create_input_output_tensors(inputs, outputs, device): input_tensors = {name: torch.from_numpy(array).to(device) for name, array in inputs.items()} output_tensors = {name: torch.from_numpy(array).to(device) for name, array in outputs.items()} return input_tensors, output_tensors def create_io_binding(sess, input_tensors, output_tensors): io_binding = sess.io_binding() for name, tensor in input_tensors.items(): io_binding.bind_input( name, tensor.device.type, 0, numpy_type(tensor.dtype), tensor.shape, tensor.data_ptr(), ) for name, tensor in output_tensors.items(): io_binding.bind_output( name, tensor.device.type, 0, numpy_type(tensor.dtype), tensor.shape, tensor.data_ptr(), ) return io_binding def onnxruntime_inference_with_io_binding(session, all_inputs, output_names, test_setting): results = [] latency_list = [] device = "cuda" if test_setting.use_gpu else "cpu" for _test_case_id, inputs in enumerate(all_inputs): result = session.run(output_names, inputs) results.append(result) outputs = {} for i in range(len(output_names)): outputs[output_names[i]] = result[i] input_tensors, output_tensors = create_input_output_tensors(inputs, outputs, device) io_binding = create_io_binding(session, input_tensors, output_tensors) # warm up once session.run_with_iobinding(io_binding) start_time = timeit.default_timer() session.run_with_iobinding(io_binding) latency = timeit.default_timer() - start_time latency_list.append(latency) return results, latency_list def onnxruntime_inference(session, all_inputs, output_names): if len(all_inputs) > 0: # Use a random input as warm up. session.run(output_names, random.choice(all_inputs)) results = [] latency_list = [] for _test_case_id, inputs in enumerate(all_inputs): start_time = timeit.default_timer() result = session.run(output_names, inputs) latency = timeit.default_timer() - start_time results.append(result) latency_list.append(latency) return results, latency_list def to_string(model_path, session, test_setting): sess_options = session.get_session_options() option = f"model={os.path.basename(model_path)}," option += f"graph_optimization_level={sess_options.graph_optimization_level},intra_op_num_threads={sess_options.intra_op_num_threads},".replace( "GraphOptimizationLevel.ORT_", "" ) option += f"batch_size={test_setting.batch_size},sequence_length={test_setting.sequence_length}," option += f"test_cases={test_setting.test_cases},test_times={test_setting.test_times}," option += f"use_gpu={test_setting.use_gpu},use_io_binding={test_setting.use_io_binding}," option += f"average_sequence_length={test_setting.average_sequence_length}," option += f"random_sequence_length={test_setting.random_sequence_length}" return option def run_one_test(model_setting, test_setting, perf_results, all_inputs, intra_op_num_threads): session = create_session( model_setting.model_path, test_setting.use_gpu, test_setting.provider, intra_op_num_threads, model_setting.opt_level, log_severity=test_setting.log_severity, tuning_results_path=model_setting.input_tuning_results, ) output_names = [output.name for output in session.get_outputs()] key = to_string(model_setting.model_path, session, test_setting) if key in perf_results: print("skip duplicated test:", key) return print("Running test:", key) all_latency_list = [] if test_setting.use_io_binding: for _i in range(test_setting.test_times): results, latency_list = onnxruntime_inference_with_io_binding( session, all_inputs, output_names, test_setting ) all_latency_list.extend(latency_list) else: for _i in range(test_setting.test_times): results, latency_list = onnxruntime_inference(session, all_inputs, output_names) all_latency_list.extend(latency_list) # latency in milliseconds latency_ms = np.array(all_latency_list) * 1000 average_latency = statistics.mean(latency_ms) latency_50 = np.percentile(latency_ms, 50) latency_75 = np.percentile(latency_ms, 75) latency_90 = np.percentile(latency_ms, 90) latency_95 = np.percentile(latency_ms, 95) latency_99 = np.percentile(latency_ms, 99) throughput = test_setting.batch_size * (1000.0 / average_latency) perf_results[key] = ( average_latency, latency_50, latency_75, latency_90, latency_95, latency_99, throughput, ) print( "Average latency = {} ms, Throughput = {} QPS".format(format(average_latency, ".2f"), format(throughput, ".2f")) ) if model_setting.output_tuning_results: output_path = os.path.abspath(model_setting.output_tuning_results) if os.path.exists(output_path): old_output_path = output_path output_path = f"""{output_path.rsplit(".json", 1)[0]}.{datetime.now().timestamp()}.json""" print("WARNING:", old_output_path, "exists, will write to", output_path, "instead.") trs = session.get_tuning_results() with open(output_path, "w") as f: json.dump(trs, f) print("Tuning results is saved to", output_path) def launch_test(model_setting, test_setting, perf_results, all_inputs, intra_op_num_threads): process = multiprocessing.Process( target=run_one_test, args=( model_setting, test_setting, perf_results, all_inputs, intra_op_num_threads, ), ) process.start() process.join() def run_perf_tests(model_setting, test_setting, perf_results, all_inputs): if test_setting.intra_op_num_threads is not None: launch_test( model_setting, test_setting, perf_results, all_inputs, test_setting.intra_op_num_threads, ) return cpu_count = psutil.cpu_count(logical=False) logical_cores = psutil.cpu_count(logical=True) candidate_threads = list({logical_cores, cpu_count}) for i in range(1, min(16, logical_cores)): if i not in candidate_threads: candidate_threads.append(i) candidate_threads.sort(reverse=True) for intra_op_num_threads in candidate_threads: launch_test(model_setting, test_setting, perf_results, all_inputs, intra_op_num_threads) def run_performance(model_setting, test_setting, perf_results): input_ids, segment_ids, input_mask = get_bert_inputs( model_setting.model_path, model_setting.input_ids_name, model_setting.segment_ids_name, model_setting.input_mask_name, ) # Do not generate random mask for performance test. print( f"Generating {test_setting.test_cases} samples for batch_size={test_setting.batch_size} sequence_length={test_setting.sequence_length}" ) all_inputs = generate_test_data( test_setting.batch_size, test_setting.sequence_length, test_setting.test_cases, test_setting.seed, test_setting.verbose, input_ids, segment_ids, input_mask, test_setting.average_sequence_length, test_setting.random_sequence_length, mask_type=model_setting.mask_type, ) run_perf_tests(model_setting, test_setting, perf_results, all_inputs) def parse_arguments(): parser = argparse.ArgumentParser() parser.add_argument("--model", required=True, type=str, help="bert onnx model path") parser.add_argument( "-b", "--batch_size", required=True, type=int, nargs="+", help="batch size of input. Allow one or multiple values in the range of [1, 128].", ) parser.add_argument( "-s", "--sequence_length", required=True, type=int, help="maximum sequence length of input", ) parser.add_argument( "--samples", required=False, type=int, default=10, help="number of samples to be generated", ) parser.add_argument( "-t", "--test_times", required=False, type=int, default=0, help="number of times to run per sample. By default, the value is 1000 / samples", ) parser.add_argument( "--opt_level", required=False, type=int, choices=[0, 1, 2, 99], default=99, help="onnxruntime optimization level: 0 - disable all, 1 - basic, 2 - extended, 99 - enable all.", ) parser.add_argument( "--seed", required=False, type=int, default=3, help="random seed. Use the same seed to make sure test data is same in multiple tests.", ) parser.add_argument( "--verbose", required=False, action="store_true", help="print verbose information", ) parser.set_defaults(verbose=False) parser.add_argument( "--log_severity", required=False, type=int, default=2, choices=[0, 1, 2, 3, 4], help="0:Verbose, 1:Info, 2:Warning, 3:Error, 4:Fatal", ) parser.add_argument("--use_gpu", required=False, action="store_true", help="use GPU") parser.set_defaults(use_gpu=False) parser.add_argument("--use_io_binding", required=False, action="store_true", help="use io_binding") parser.set_defaults(use_io_binding=False) parser.add_argument( "--provider", required=False, type=str, default=None, help="Execution provider to use", ) parser.add_argument( "-n", "--intra_op_num_threads", required=False, type=int, default=None, help=">=0, set intra_op_num_threads", ) parser.add_argument( "--input_ids_name", required=False, type=str, default=None, help="input name for input ids", ) parser.add_argument( "--segment_ids_name", required=False, type=str, default=None, help="input name for segment ids", ) parser.add_argument( "--input_mask_name", required=False, type=str, default=None, help="input name for attention mask", ) parser.add_argument( "--input_tuning_results", default=None, type=str, help="tuning results (json) to be loaded before benchmark", ) parser.add_argument( "--output_tuning_results", default=None, type=str, help="tuning results (json) to be saved after benchmark", ) parser.add_argument( "-a", "--average_sequence_length", default=-1, type=int, help="average sequence length excluding padding", ) parser.add_argument( "-r", "--random_sequence_length", required=False, action="store_true", help="use uniform random instead of fixed sequence length", ) parser.set_defaults(random_sequence_length=False) parser.add_argument( "--mask_type", required=False, type=int, default=2, help="mask type: (1: mask index or sequence length, 2: raw 2D mask, 3: key len, cumulated lengths of query and key)", ) args = parser.parse_args() return args def main(): args = parse_arguments() if args.test_times == 0: args.test_times = max(1, int(1000 / args.samples)) if args.average_sequence_length <= 0: args.average_sequence_length = args.sequence_length manager = multiprocessing.Manager() perf_results = manager.dict() batch_size_set = set(args.batch_size) if not (min(batch_size_set) >= 1 and max(batch_size_set) <= 128): raise Exception("batch_size not in range [1, 128]") model_setting = ModelSetting( args.model, args.input_ids_name, args.segment_ids_name, args.input_mask_name, args.opt_level, args.input_tuning_results, args.output_tuning_results, args.mask_type, ) for batch_size in batch_size_set: test_setting = TestSetting( batch_size, args.sequence_length, args.samples, args.test_times, args.use_gpu, args.use_io_binding, args.provider, args.intra_op_num_threads, args.seed, args.verbose, args.log_severity, args.average_sequence_length, args.random_sequence_length, ) print("test setting", test_setting) run_performance(model_setting, test_setting, perf_results) # Sort the results so that the first one has smallest latency. sorted_results = sorted(perf_results.items(), reverse=False, key=lambda x: x[1]) summary_file = os.path.join( Path(args.model).parent, "perf_results_{}_B{}_S{}_{}.txt".format( "GPU" if args.use_gpu else "CPU", "-".join([str(x) for x in sorted(list(batch_size_set))]), args.sequence_length, datetime.now().strftime("%Y%m%d-%H%M%S"), ), ) with open(summary_file, "w+", newline="") as tsv_file: tsv_writer = csv.writer(tsv_file, delimiter="\t", lineterminator="\n") headers = None for key, perf_result in sorted_results: params = key.split(",") if headers is None: headers = [ "Latency(ms)", "Latency_P50", "Latency_P75", "Latency_P90", "Latency_P95", "Latency_P99", "Throughput(QPS)", ] headers.extend([x.split("=")[0] for x in params]) tsv_writer.writerow(headers) values = [format(x, ".2f") for x in perf_result] values.extend([x.split("=")[1] for x in params]) tsv_writer.writerow(values) print("Test summary is saved to", summary_file) if __name__ == "__main__": # work around for AnaConda Jupyter. See https://stackoverflow.com/questions/45720153/python-multiprocessing-error-attributeerror-module-main-has-no-attribute __spec__ = None main()
Memory