# Natural Language Toolkit: Stemmers # # Copyright (C) 2001-2024 NLTK Project # Author: Trevor Cohn <tacohn@cs.mu.oz.au> # Edward Loper <edloper@gmail.com> # Steven Bird <stevenbird1@gmail.com> # URL: <https://www.nltk.org/> # For license information, see LICENSE.TXT import re from nltk.stem.api import StemmerI class RegexpStemmer(StemmerI): """ A stemmer that uses regular expressions to identify morphological affixes. Any substrings that match the regular expressions will be removed. >>> from nltk.stem import RegexpStemmer >>> st = RegexpStemmer('ing$|s$|e$|able$', min=4) >>> st.stem('cars') 'car' >>> st.stem('mass') 'mas' >>> st.stem('was') 'was' >>> st.stem('bee') 'bee' >>> st.stem('compute') 'comput' >>> st.stem('advisable') 'advis' :type regexp: str or regexp :param regexp: The regular expression that should be used to identify morphological affixes. :type min: int :param min: The minimum length of string to stem """ def __init__(self, regexp, min=0): if not hasattr(regexp, "pattern"): regexp = re.compile(regexp) self._regexp = regexp self._min = min def stem(self, word): if len(word) < self._min: return word else: return self._regexp.sub("", word) def __repr__(self): return f"<RegexpStemmer: {self._regexp.pattern!r}>"
Memory