� H�g2����ddlmZmZed���Zed���Zed6d���Zed6d���Zed6d���Zed���Zed ���Z ed ���Z ed ���Z ed ���Z ed ���Z ed���Zed���Zd�Zed���Zed���Zed���Zed���Zed���Zed���Zed���Zed���Zd�Zed���Zed���Zed���Zed���Zd�Zd�Zed6d ���Z ed6d!���Z!d7d#�Z"ed6d$���Z#ed8d%���Z$d&�Z%ed'���Z&ed(���Z'eifd)���Z(ed9d+���Z)eifd,���Z*ed9d-���Z+d.�Z,d/�Z-d0�Z.d1ifd2�Z/ed6d3���Z0ed6d4���Z1d5S):�)�defun� defun_wrappedc�.�|�d|��S)zCComputes the Bessel function `J_0(x)`. See :func:`~mpmath.besselj`.���besselj��ctx�xs �g/home/asafur/pinokio/api/open-webui.git/app/env/lib/python3.11/site-packages/mpmath/functions/bessel.py�j0r ��� �;�;�q�!� � ��c�.�|�d|��S)zDComputes the Bessel function `J_1(x)`. See :func:`~mpmath.besselj`.rrr s r �j1rrrrc �F���� � � �t���turd}nN�����������}|r"t��������|r�dkrd�z�j� �|fi|��zS������������ |r׉�|��� ��� ��r�� dkr�t� ��� �j} �xjdz c_���� ��fd�t� dz��D����}|�_n #|�_wxYw|�� d��� zz}�n+� ��fd�}�j |�� gfi|��}�n|sO|rMt� ��d kr:t���d kr' �� ����S#t$rYnwxYw�s=�s�j�z�z}n������dkr��z}n��j�z�z}n~�j} �xjt%d t� ��z�j��z c_���d d� ��� � �� fd�}�j |�gfi|��}|�_n #|�_wxYw| }|S)NTr������c3��K�|]@}d|z���|��z��d|z�z�z ���zV��AdS)r�N)�binomialr)�.0�kr �d�n�zs ����r � <genexpr>zbesselj.<locals>.<genexpr>%sm�����)�)��!�1�W�s�|�|�A�a�'8�'8�8�3�;�;�q��s�1�u�Q�w�q�;Q�;Q�Q�)�)�)�)�)�)rrrc����������j�z���dd���}d||z dzzd||z dzzg}d�j�g|d|zz d||z gg||dzdz|dzdzg||dzgz|fg}|S)N��prec�пT��exact��?rr��fmulr �pi�rr�r�B�T�Mr rs ���r �hzbesselj.<locals>.h+s�����H�H�S�X�X�a����!��X�<�<�e�4�H�P�P���!�A�#�a�%�[�#�q��s�1�u�+�.������l�A�a��c�E�#�a��c�?�2�a�!�A�#�s��A�a�C��9�8M�a�QR�ST�QT�PU�g�VW�X�Y���r� ��r$r"c ���������td�j�z�����d���}�g|gg|dzgg|dzg|fgS)NrrTr"r)�fnegr&�maxr )rr)r,r �ws ���r r-zbesselj.<locals>.hGsb���������!�Q�S��3�8�A�:�5F�5F��!G�!G�t��T�T�A��S�1�#�r�A�a�C�5�"�q��s�e�Q�?�@�@r)�type�int�convert�isint�_rer�magr �fsum�range�mpf� hypercomb�abs�_besselj�NotImplementedError�one�re�inf�minr&) r rr� derivative�kwargs�n_isint�orig�vr-r,rr4s ``` @@@r rr sK�������� �A�w�w�#�~�~���� �K�K��N�N���)�)�A�,�,�� � ��C�G�G�A�J�J���A��B�1�q�5�5��Q�w����a�R��J�A�A�&�A�A�A�A� � � �A���A� ���� � �A��3� �K�K� � #� #�� �9�9�Q�<�<� 2�A��F�F��A���A��8�D� ����B�����H�H�)�)�)�)�)�)�)�"�1�Q�3�Z�Z�)�)�)�)�)�� �����4������� �������q�b�!� !�A�A� � � � � � � � �� �a�!�A��1�1�&�1�1�A�A�� �� �C��F�F�R�K�K�C��F�F�R�K�K� ��|�|�A�q�)�)�)��&� � � ��� ����� �� $��G�a�K��M���������Q����a�C����G�a�K�!�O����8�D� ����C��#�a�&�&��#�(�3�3�3����H�H�Q��4�H�0�0��A�A�A�A�A�A�A�"�C�M�!�a�S�3�3�F�3�3�������4������� �B�� �Hs,�AE � E�;G� G�G�(A"J� Jc ���� ���|��}�������ss|rt�|sd|z�zS��|��rd|�zzS��|��}|dkr �j|�zzS|dkrd|�zzS�j|�zzS������ |r.��|��}� ��fd�}�j|||gfi|��}n� ��fd�}�j||gfi|��}|S)Nrrc����������j�z���dd���}d||z dzzd||z dzz|dzg}d�j�g|d|zz d||z g|dzg||dzdz|dzdzg||fg}|S)Nr��?Tr"r$rrr%r(s ���r r-zbesseli.<locals>.hfs����������!�Q�S�X�a�Z��8�8�$�d��K�K�A��a��c�!�e��c�1�Q�3�q�5�k�1�Q�3�/�A��S�V�A�,��!�A�#��c�!�A�#���!��u�Q��1��c� �1�Q�3��)�7L�Q�q�Q�R�A��Hrc ������dd���}��||td�j�z�����}|g|gg|dzgg|dzg|fgS)Nr$Tr"rrr)r&r3r )rr4r)r,r rs ���r r-zbesseli.<locals>.hmsi�������C�t��,�,�A�����A�C��#�(�1�*�$5�$5��6�6�A��S�1�#�r�A�a�C�5�"�q��s�e�Q�7�8� 8r)r7� ValueErrorr8rC�nanrDr:r>) r rrrFrGr)rr-rJr,s ` ` @r �besselirQPsp����� � � �A���A� � � �A���A� �!� � �� �� ��Q�3�q�5�L� �9�9�Q�<�<� ��a��c�7�N� �F�F�1�I�I�� ��6�6��7�A�a�C�=� � ��U�U��a��c�7�N��7�A�a�C�=� � ���� � �A�� ,� �K�K� � #� #�� � � � � � � � �C�M�!�a��U� -� -�f� -� -��� 9� 9� 9� 9� 9� 9� 9� �C�M�!�a�S� +� +�F� +� +�� �Hrc ���|s�|rt�|s|j ||zzS|�|��r |j||zzS|�|��}|dz}|�|��r|dkr|j ||zzSd||zzS|dkr2t |�|����dzr |j||zzS|j||zzS|xj dz c_ |� |��\}}||j kr|j } |xj dzc_ || z }n|dkr|xj |zc_ |� |��\} } |j |||fi|��| z|j | ||fi|��z | z S)Nr$rrr.)rOrD�imrPrCr8r6�floor�ninfr � nint_distance�eps� cospi_sinpir) r rrrFrGr)�q�mrr-�cos�sins r �besselyr]ts��� �$� � �� �� $��G�8�q��s�#� #� �6�6�!�9�9� #��7�a��c�?� "� �F�F�1�I�I�� �c�E�� �9�9�Q�<�<� !��1�u�u���x�1�Q�3�'�'��A�a�C�y� � �q�5�5�S����1���&�&��*�5��7�a��c�?� "��8�q��s�#� #��H�H��N�H�H� � � �Q� � �D�A�q��C�H�9�}�}� �W�H�� ���A� ��� �Q���� �Q��� ���A� ������q�!�!�H�C�� �C�K��!�J� 0� 0�� 0� 0�� 4��� �Q�B�q��-�-�f�-�-� .�/2� 3�3rc �����s�jS�����}|dkr�fd�}n�xj|z c_��fd�}�j||gfi|��S)Nrc�v���dz dz}�dg| |dz g|gggd|z g|f}�dg|| dz g| gggd|zg|f}||fS)Nrr�)rr)�T1�T2rs �r r-zbesselk.<locals>.h�so����1��q��A��Q��1�"�a��c��Q�C��R�!�A�#���9�B��Q��!�a�R��T��a�R�D�"�b�1�Q�3�%��:�B��r�6�Mrc �v���jdz ���� ��ggd�gg|dzd|z ggdd�zz fgS)Nr)r$��rr$r)r'�exp�rr rs ��r r-zbesselk.<locals>.h�sS����f�Q�h��3�7�7�A�2�;�;�/����r�2��3���A����B��!��H�.�/� /r)rDr:r r>)r rrrGr,r-s` ` r �besselkrg�s����� ���w�� ���� � �A��1�u�u� � � � � � � ���A� ��� /� /� /� /� /� /� �3�=��Q�C� *� *�6� *� *�*rc �P�|j||fi|��|j|j||fi|��zzS�N�r�jr]�r rr rGs r �hankel1rm��@�� �3�;�q�� $� $�V� $� $�s�u�[�S�[��1�-F�-F�v�-F�-F�'F� F�Frc �P�|j||fi|��|j|j||fi|��zz Srirjrls r �hankel2rp�rnrc �B�|dkrH|�|��dkr|S|�|��dkr |j|zS|j|zS|�d|d���}d|z}|�|��||zz|j||z dd|zz|fi|��zS)NrrdTr"r$rr)rCrDrPr&re�hyp1f1)r rrZrrGr �ys r �whitmrt�s����A�v�v� �6�6�!�9�9�t� � ��H� �V�V�A�Y�Y�� � ��7�Q�;� ��7�Q�;� � ����q���%�%�A� �A��A� �7�7�1�:�:��1�� �z�s�z�!�A�#�q��1��u�a�B�B�6�B�B� B�Brc �:�|dkrDt|�|����}|dkr|S|dkr |j|zS|j|zS|�d|d���}d|z}|�|��||zz|j||z dd|zz|fi|��zS)Nrr$rdTr"rr)r?rCrDrPr&re�hyperu)r rrZrrG�gr rss r �whitwrx�s����A�v�v� ����q� � �N�N�� �s�7�7��H� ��W�W��7�Q�;� ��7�Q�;� � ����q���%�%�A� �A��A� �7�7�1�:�:��1�� �z�s�z�!�A�#�q��1��u�a�B�B�6�B�B� B�Brc �`�����|��\}}��|��\}}�������sD��|��dkr!��d|z g||z dzg��S�j�zSd|z|z }��|��\}} �j} �xjdz c_��dd||f||gd�z �j���} | �|zz | �_S#| �_wxYw#�j$rYnwxYw��fd�} �j| ||gfi|��S)Nrr.rrr)�maxtermsc�����|��}�j|gddgg||z dz|g|g|g�f}�j |�gddd|z gg|d|z g||z dzgd|z g�f}||fS)Nrrr)�sinpir')�a�br4rarbr rs ��r r-zhyperu.<locals>.h�s���� �I�I�a�L�L���v�a�j�!�B���A�a�C��E�!�9�a�S�!��Q� 7����w�q��m�Q�r�!�A�#�J�r�1�Q�q�S�'�1�Q�3�q�5�'�1�Q�3�%�� B���2�v� r) �_convert_paramr7rC� gammaprodrDr �hypsum� NoConvergencer>) r r}r~rrG�atype�btype�bb�bbtyperIrJr-s ` ` r rvrv�s������!�!�!�$�$�H�A�u��!�!�!�$�$�H�A�u� � � �A���A� �� �6�6�!�9�9��>�>��=�=�!�A�#���!��A��w�/�/� /��7�Q�;� � �1��Q��B��#�#�B�'�'�J�B��  ��x�� � �H�H��N�H�H�� � �1�a�%���1�b�'�2�a�4�#�(� �S�S�A��q�!�t�8��C�H�H��t�C�H�O�O�O�O�� � � � � � �� ���������� �3�=��Q�q�E� ,� ,�V� ,� ,�,s*�/D �7>C=�5D �= D�D � D�Dc ������|��}��������fd�}�j||gfi|��S)Nc����dz d���j��zg|dzdgg|dzgdgd|dzg�dz dz fgS�Nrr$rr��?��sqrtr'rfs ��r r-zstruveh.<locals>.h�sb����A�#�s�3�8�8�C�F�+�+�+�,�q��s�B�i��a��e�W�q�c�C�QR�SV�QV�<�[\�]^�[^�ab�Zb�Yb�c�d�dr�r7r>�r rrrGr-s` ` r �struvehr��sd���� � � �A���A� � � �A���A�e�e�e�e�e�e� �3�=��Q�C� *� *�6� *� *�*rc ������|��}��������fd�}�j||gfi|��S)Nc����dz d���j��zg|dzdgg|dzgdgd|dzg�dz dzfgSr�r�rfs ��r r-zstruvel.<locals>.h�s_����A�#�s�3�8�8�C�F�+�+�+�,�q��s�B�i��a��e�W�q�c�C�QR�SV�QV�<�Z[�\]�Z]�`a�Ya�b�c�crr�r�s` ` r �struvelr��sd���� � � �A���A� � � �A���A�d�d�d�d�d�d� �3�=��Q�C� *� *�6� *� *�*rc �������|��d}���������fd�}�j||gfi|��S)Nrc�:���j}||z}|dz}||z ||zd|z d|zf\}}}}��|��\}} �dkr |�z| g|g} } �dkr |�z| g| g} } ���d���} | ddgg||gdg||g| f} | dgg||gdg||g| f}| |fS)Nr0rrr!��mult)�mpq_1_2rX�square_exp_arg)rJr~�urZ�a1�a2�b1�b2�c�s�Ar*r4rarbr �whichrs ���r r-z_anger.<locals>.hs���� �K�� �a�C�� �a�C����c�1�Q�3��!��Q�q�S�(� ��2�b�����q�!�!���1� �A�:�:��a�C��8�a�S�q�A� �A�:�:��a�C�!��9�q�c�q�A� � � �q�u� � -� -�� ��A���R��G�a�S�2�b�'�1� 4�� ���R�"�R��1�#��2�w�� 1���2�v� r�rr7r>)r r�rJrrGr-s`` ` r �_angerr�so����� ���1���a� �A� � � �A���A� � � � � � � � �3�=��Q�C� *� *�6� *� *�*rc �"�t|d||fi|��S�Nr�r��r rJrrGs r �angerjr���� �#�q�!�Q� )� )�&� )� )�)rc �"�t|d||fi|��S�Nrr�r�s r �weberer�r�rc �������|��d}��|��d}��������fd�}�j|||gfi|��S)Nrc ����j}���d���}||z dz||zdz�gdd|dzgggdg|||z dzz|||zdzzg|ffS)Nr!r�rrr0�r�r�)r�rJr~r4r rs ��r r-zlommels1.<locals>.h"s���� �K�� � � �q�u� � -� -���1��Q���!��A��q�!�B��A�a�C�=�"�b�1�#� ��!��A��Y�q�!�A�#�a�%�y� !�1�&�'� 'rr��r r�rJrrGr-s` ` r �lommels1r�s����� ���1���a� �A� ���1���a� �A� � � �A���A�'�'�'�'�'�'� �3�=��Q�q�E� ,� ,�V� ,� ,�,rc �������|��d}��|��d}��������fd�}�j|||gfi|��S)Nrc �d���j}���d���}||z dz||zdz�gdd|dzgggdg|||z dzz|||zdzzg|f}d�g||zdz | g||||zdzzg|||z dzzggd|z g|f}d�g||z dz |g| |||z dzzg|d|z |z zggd|zg|f}|||fS)Nr!r�rrr0rr�) r�rJr~r4rarb�T3r rs ��r r-zlommels2.<locals>.h4s��� �K�� � � �q�u� � -� -����c�!�e�Q�q�S��U�A� ��R��1�� �r�2��s�Q��!��A��Y�q�!�A�#�a�%�y�<Q�ST� T����V�a��c�!�e�a�R�[�1�a��1��Q��i�.�1�a��c�!�e�9�+�r�A�a�C�5�!� K����V�a��c�!�e�Q�Z�1�"�a��1��Q��i��1�a��c�!�e�9�+�r�A�a�C�5�!� K���2�r�z�rr�r�s` ` r �lommels2r�)s����� ���1���a� �A� ���1���a� �A� � � �A���A������� �3�=��Q�q�E� ,� ,�V� ,� ,�,rc ������|��}��������fd�}�j||gfi|��S)Nc �����dz dz }��d|z��\}}|�dz gd|gg|dzggdd|dzzd|zdzg|f}|�dz gd|dzgg|dzggdd|dzzd|zdzg|f}||fS)N���rrr$r�r0�rX�rr)r[r\rarbr rs ��r r-zber.<locals>.hKs������c�A�X�I���?�?�5��7�+�+���S��1�Q�3�Z�!�Q���a��c�U�B��c�1�Q�3�i��Q��q��0I�1� L���1�Q�3�Z�!�Q�q�S��2��!��u�b�3��Q�q�S� �3�q�5��7�2K�Q� N���2�v� rr�r�s` ` r �berr�F�`���� � � �A���A� � � �A���A������� �3�=��Q�C� *� *�6� *� *�*rc ������|��}��������fd�}�j||gfi|��S)Nc �����dz dz }��d|z��\}}|�dz gd|dzgg|dzggdd|dzzd|zdzg|f}|�dz gd|gg|dzggdd|dzzd|zdzg|f}||fS)Nr���?rrr�r$r0r�r�s ��r r-zbei.<locals>.hXs������c�A�X�I���?�?�4��6�*�*���S��1�Q�3�Z�!�Q�q�S��2��!��u�b�3��Q�q�S� �3�q�5��7�2K�Q� N���1�Q�3�Z�!�Q���a��c�U�B��c�1�Q�3�i��Q��q��0I�1� L���2�v� rr�r�s` ` r �beir�Sr�rc ������|��}��������fd�}�j||gfi|��S)Nc ����� dz dz }� �d|z��\}}� �d|z��\}}d� d|zg| dz |dg| gggddd|zzd|dzzg|f}d� | g| dz d|zdg| dz gggddd|zzd|dzzg|f}d� d|zg|dz | dg|gggddd|z zdd|zz g|f}d� | g|dz d|z dg|dz gggddd|z zdd|zz g|f} |||| fS) Nr�rMr�rr0rr$r�r�� rr)�cos1�sin1�cos2�sin2rarbr��T4r rs ��r r-zker.<locals>.hesu�����c�A�X�I���_�_�T�!�V�,�,� ��d��_�_�T�!�V�,�,� ��d���A�d�F�^�q�b��d�A�q�\�Q�B�4��R�#�s�A�a�C�y�#�q�QR�s�)�9T�VW� W����T�E�]�a�R��T�1�Q�3��N�a�R��T�F�B��S�#�q��s�)�S�RS�TU�RU�Y�<W�YZ� Z����A�d�F�^�a��c�A�2�q�\�A�3��B��c�1�Q�3�i��3�q�5��8Q�ST� T����T�E�]�Q�q�S�!�A�#�q�M�A�a�C�5�"�b�3��Q�q�S� �1�S�QR�U�7�:S�UV� V���2�r�2�~�rr�r�s` ` r �kerr�`�`���� � � �A���A� � � �A���A������� �3�=��Q�C� *� *�6� *� *�*rc ������|��}��������fd�}�j||gfi|��S)Nc ����� dz dz }� �d|z��\}}� �d|z��\}}| d� gd|dz d|z g|dz gggddd|z zdd|zz g|f}| d� gd|dz | g|gggddd|z zdd|zz g|f}| d� gd| dz |g| gggdd|dzzd|dzzg|f}| d� gd| dz |dzg| dz gggdd|dzzd|dzzg|f} |||| fS) Nr�r�rMrrr0r�r$r�r�s ��r r-zkei.<locals>.husq�����c�A�X�I���_�_�T�!�V�,�,� ��d��_�_�T�!�V�,�,� ��d��e�Q��]�Q��!��Q�q�S�M�A�a�C�5�"�b�3��Q�q�S� �1�S�QR�U�7�:S�UV� V���e�Q��]�Q��!��a�R�L�1�#�r�2��S�!�A�#�Y��#�a�%��7P�RS� S���e�Q��]�Q���1��a�L�A�2�$��B��c�1�Q�3�i��a�PQ�c��8S�UV� V���e�Q��]�Q���1��a��c�N�a�R��T�F�B��S�#�q��s�)�S�RS�TU�RU�Y�<W�YZ� Z���2�r�2�~�rr�r�s` ` r �keir�pr�rc�$����j���fd�}|S)Nc���|j}|j}|��d��\}}||kr| S|�|��f|�<|�dS)N)rrr)�_misc_const_cacher �get)r �cacher �prJ�f�names ��r � f_wrappedzc_memo.<locals>.f_wrapped�s\����%���x���i�i��f�%�%���!� ��9�9��2�I����3���.�E�$�K���;�q�>� !r)�__name__)r�r�r�s` @r �c_memor��s1���� �:�D�"�"�"�"�"�"� �rc��d|�d��|�|�d��dz ��zz S)Nr� rr0��cbrt�gammar=�r s r � _airyai_C1r��s6�� ����� � �c�i�i����� � �1� �5�5�5� 6�6rc��d|�d��|�|�d��dz ��zz S)Nrr0rr�r�s r � _airyai_C2r��s6�� ����!���s�y�y�������A��6�6�6� 7�7rc��d|�dd��|�|�d��dz ��zz S)Nrr0�r��nthrootr�r=r�s r � _airybi_C1r��s:�� �� � �A�a� � �3�9�9�S�W�W�Q�Z�Z��\�#:�#:�:� ;�;rc��|�dd��|�|�d��dz ��z S)Nr0r�rr�r�s r � _airybi_C2r��s5�� �;�;�q�� � �c�i�i����� � �1� �5�5� 5�5rc��|j} |�dd��|�d��zd|jzz }||_n #||_wxYw| S)Nr0�2/3r)r �powerr�r')r r rJs r �_airybi_n2_infr��s\�� �8�D�� �I�I�a�� � �s�y�y��/�/� /��3�6�� :�������4������� �2�Is �7A� Ac�*�|dk�r|dkr|S|j}|j} |xjdz c_|�|dz|z��|�d||z��z|jz }|dkr;||�d|dzz|z��z}||�dd��z}nG|t |�d|dzz|z����z}||�dd��z}||_n #||_wxYw| |zSt�) N�Zrr.rr0rr�z1/6)�mpq_1_3r r�r�r'r|r?rA)r rr�ntyper�r)r rJs r � _airyderiv_0r��s$�� ��|�|� �q�5�5��H� �K���x�� � �H�H��N�H�H�� � �1�Q�3��'�"�"�S�Y�Y�q��1��%5�%5�5���>�A���z�z��S�Y�Y�q�!�A�#�w�q�y�)�)�)���S�Y�Y�q��'�'�'����S����1�a��c�7�1�9�-�-�.�.�.���S�Y�Y�q��'�'�'���C�H�H��t�C�H�O�O�O�O��r�A�v� �"�!s �CC<�< Dc �����������|r��|��\}}nd}�����s��r�|r�|dkr|dkrR��jkr��d��dz d�z zS��jkr��d��dz d�z zS|dkr!��jkr�S��jkr d|z� zS|s ��jks ��jkrd�z St d����r4tdtd�� ���z�����nd�|r�|dkr���fd �}�j |gfi|��S�dkrt��||d��S���fd �}�j ||gfi|��}�� ���r*�� |��r��|��}|S���fd �}�j |gfi|��S) Nrr�rrr0�����zessential singularity of Ai(z)r�c�.����� ��dkr��xj� z c_� dz}d|z }d|zdz }�xj� zc_��|�� d���j��zz ��� d��z}|gdgggdd gg|ffS�xj� z c_� dzd z }�xj� zc_t ���d z}t���}|� gddgggg�jg|f}|gdgggg�j g|f}||fS) Nr�r�r�r�r0rr)rr�)�r�r�r$) r9r rer�r'r�r�r��mpq_5_3r�� r4r)r��C�C1�C2rarbr � extraprecrs ���r r-zairyai.<locals>.h�s>����7�7�1�:�:��>�>��H�H� �)�H�H��3��A�E�!�G���A��a��Q��H�H� �)�H�H������� �Q�s�x�x���'7�'7�%7�8����Q�q�9I�9I�I�A��C���B�r�6�%�.��A�>�?�?��H�H� �)�H�H��1��q��A��H�H� �)�H�H�#�C���3�.�B�#�C���B��Q���1��b��B�� �}�Q�>�B���q�c�"�R��C�K�=��:�B��r�6�Mrc�`��� xj� z c_�dzdz }� xj� zc_� j� j� j}}}|}d}d|z |z}d|z |z}d||zz } d�g||z | g|g||| g||g||| g|f} |}d|z |z}d||zz }d|z |z} d�� g||z | dg|g||| g||g||| g|f} | | fS�Nr0r�rrr�)r r��mpq_2_3�mpq_4_3)rr4�q13�q23�q43r�r�r�r��b3rarbr r�rs ���r r-zairyai.<locals>.h�s������I�%����q�D��F�����I�%���!�k�3�;�� ��C����1��!�A�#�s��b��!��S�y�B�Q�q��u�W�"���V�a��e�a�R�[�2�$��B�r� ���G�b��B�Z��+����A�a�C��9���1�S�5��b�a��c�3�Y�"���Q�B�Z�!�C�%�!��Q��"���2�b�z���G�b��B�Z��+���2�v� rc�(����� ��dkr��xj� z c_� dz}d|z }d|zdz }�xj� zc_��|��d���j��z��� d��zz }|gdgggdd gg|ffS�xj� z c_� dzd z }�xj� zc_t ���}t���}|gdgggg�jg|f}� |zgdgggg�j g|f}||fS) Nr�r�r�r�r0rr)rr�)�r�r�) r9r rer�r'r�r�r�r�rr�s ���r r-zairyai.<locals>.hs7����w�w�q�z�z�A�~�~����I�%����s�F���a��A�R��T�!�V�����I�%����G�G�A�J�J��#�(�(�3�6�"2�"2� 2�3�;�;�q��3C�3C� C�D����Q�C��2�u�U�m�B�q�9�:�:����I�%����q�D�1�H�����I�%�����_�_����_�_���T�1�#�b��B�� �}�Q�6����d�V�Q�C��2�b�#�+��q�8���2�v� r)r7r�isnormalrDr=rUrOr3r6r:r>r�� _is_real_typer8r9� r rrFrGrr�r-rJr�s `` @r �airyair �s������ � � �A���A����%�%�j�1�1���5�5� �� �<�<��?�?�;�q�;� � *��#����B�w�w����<�<��7�7�1�:�:�a�<�!�A�#�-�-����=�=��7�7�2�;�;�q�=�1�Q�3�.�.��2�v�v����<�<��H����=�=���7�q�b�>�)�� �q�C�G�|�|�q�C�H�}�}��Q�3�J��9�:�:�:�����3�s�3�7�7�1�:�:�~�.�.�/�/� � �� ��=.� ��6�6� "� "� "� "� "� "� "�$!�3�=��B�1�1�&�1�1� 1��A�v�v�#�C��A�u�a�8�8�8� � � � � � � ��� �a�!��/�/��/�/�A�� � ��#�#� �� � �!� � � ��G�G�A�J�J���H� � � � � � � �&�s�}�Q��-�-�f�-�-�-rc �N����������|r��|��\}}nd}�����s�r}|rM|dkrG��jkr�S��jkr/|dkrd�z S|dkrt ���S|dkr d|z� zS|s��jkr�S��jkrd�z St d����r4tdtd�� ���z�����nd�|r�|dkr���fd�}�j |gfi|��S�dkrt��||d��S���fd �}�j ||gfi|��}�� ���r*�� |��r��|��}|S���fd �}�j |gfi|��S) Nrr�rrr�zessential singularity of Bi(z)r�c�����xj�z c_�dzdz }�xj�zc_t���dz}t���}|�gddgggg�jg|f}|gdgggg�jg|f}||fS)Nr0r�r$rr)r r�r�r�r��r4r�r�rarbr r�rs ���r r-zairybi.<locals>.h;s�������I�%����q�D�1�H�����I�%�����_�_�S�(����_�_����V�Q�q�E�"�R��C�K�=��:���T�1�#�b��B�� �}�Q�6���2�v� rc�z���xj�z c_�dzdz }�xj�zc_�j�j�j}}}�j}�j}|}d}d|z |z} d|z |z} d||zz } d�g||z | g|g| | | g||g| | | g|f} |}d|z |z} d||zz } d|z |z} d�g||z d|z g|g| | | g||g| | | g|f} | | fSr�)r r�r�r�mpq_1_6�mpq_5_6)rr4rrr�q16�q56r�r�r�r�rrarbr r�rs ���r r-zairybi.<locals>.hHs ������I�%����q�D��F�����I�%���!�k�3�;�� ��C���k���k����1��!�A�#�s��b��!��S�y�B�Q�q��u�W�"���V�a��e�a�R�[�2�$��B�r� ���G�b��B�Z��+����A�a�C��9���1�S�5��b�a��c�3�Y�"���V�a��e�Q�q�S�\�B�4�"�R�����G�b��B�Z��+���2�v� rc�����xj�z c_�dzdz }�xj�zc_t���}t���}|gdgggg�jg|f}�|zgdgggg�jg|f}||fS)Nr0r�r)r r�r�r�rr s ���r r-zairybi.<locals>.h[s���� �H�H� � !�H�H��1��q��A� �H�H� � !�H�H��C���B��C���B���q�c�"�R��C�K�=��2�B��B�$����B�r�"�c�k�]�1�4�B��r�6�Mr)r7rrrDrUr�rOr3r6r:r>r�rr8r9r s `` @r �airybirs^����� � � �A���A����%�%�j�1�1���5�5� �� �<�<��?�?�;�q�;� � *��#����C�G�|�|����C�H�}�}���7�7��Q�3�J���7�7�)�#�.�.�.��r�6�6���7�q�b�>�)�� ��C�G�|�|����C�H�}�}���s� ��9�:�:�:�����3�s�3�7�7�1�:�:�~�.�.�/�/� � �� ��,.� ��6�6� � � � � � � �!�3�=��B�1�1�&�1�1� 1��A�v�v�#�C��A�u�a�8�8�8� � � � � � � ��� �a�!��/�/��/�/�A�� � ��#�#� �� � �!� � � ��G�G�A�J�J���H� � � � � � � ��s�}�Q��-�-�f�-�-�-rFc�V��d�}d�}t|��}|dkrtd���|dvrtd���|dkrr|r7���fd�|d �jzd |zd z zd z �� ��S���j|d �jzd |zdz zd z �� ��S|dkrx|d krr|r7���fd �|d �jzd |zdz zd z �� ��S���j|d �jzd |zd z zd z �� ��S|dkr�|dkr�|rqd �jzd |zd z zd z d�jzz}����d��d z ��||��z}���fd�|��Sd �jzd |zdz zd z d�jzz}����d��d z ��||��z}���j|��SdSdS)Nc�*�|dzdd|dzdzz z zS)N�UUUUUU�?rr�r�0r`��ts r �Uz_airy_zero.<locals>.Uh� ��Q��Y��!�Q��T�"�W�+� �.�.rc�*�|dzdd|dzdzz zzS)Nrrrrrr`rs r r+z_airy_zero.<locals>.Tirrrzk cannot be less than 1�rrz%Derivative should lie between 0 and 1rc�0����|d��Sr�)r �rr s �r �<lambda>z_airy_zero.<locals>.<lambda>q����#�*�*�Q�q�/�/�rr0r��Fc�0����|d��Sr��rr s �r r!z_airy_zero.<locals>.<lambda>vr"rTy�?c�0����|d��Sr�r%r s �r r!z_airy_zero.<locals>.<lambda>}r"r) r6rO�findrootr'r r�ln2�expjpir=) r r�rrF�complexrr+rr�s ` r � _airy_zeror+fs����.�.�.�.�.�.� �A���A��1�u�u��2�3�3�3� �� � ��@�A�A�A� ��z�z� � (��<�<� 9� 9� 9� 9���1�S�V�8�Q�q�S��U�#�A�%�&�&�&�(�(� (��|�|�C�J���1�S�V�8�Q�q�S��U�+;�A�+=�)>�)>�(>�?�?�?� ��z�z�g��&�&� � (��<�<� 9� 9� 9� 9���1�S�V�8�Q�q�S��U�#�A�%�&�&�&�(�(� (��|�|�C�J���1�S�V�8�Q�q�S��U�+;�A�+=�)>�)>�(>�?�?�?� ��z�z�g��o�o� � >��#�&��!�A�#�a�%� ��"�U�3�7�]�2�A�� � �3�7�7�1�:�:�a�<�(�(�1�1�Q�4�4�/�A��<�<� 9� 9� 9� 9�1�=�=� =� �c�f�H�a��c�!�e� �Q� ��s�w�� .�� �J�J�s�w�w�q�z�z�!�|� $� $�q�q��t�t� +���|�|�C�J��*�*�*��z�o�orc�(�t|d||d��S)NrF�r+)r rrFs r � airyaizeror.�s�� �c�1�a��U� 3� 3�3rc�(�t|d|||��Sr�r-)r rrFr*s r � airybizeror0�s�� �c�1�a��W� 5� 5�5rc �|�����������������r=��jkr�dkrd�z S�dkr�S��jkrd�z St d����r4t dt d�����z�����nd���d��rt� �����dkr��dkrUt�� ������j dz dzkr$��fd�}�� |g�jd � ��S�dkrYt�� � ����d �j zdz dzkr$��fd �}�� |g�jd � ��Sn#�j$rYnwxYw�����fd �}�j |gfi���S)Nrrzessential singularityr�rFr0g+�����?c �:���j�gddggggd�gd�dzz ffS�Nr))rr0)rr0rr�r0�r'�r rs��r r-z_scorer.<locals>.h�s1���!�f�Q�Z��B���2�o�o�o�b��1�a�4��P�R�RrT)rz� force_seriesrc �<���j �gddggggd�gd�dzz ffSr3r4r5s��r r-z_scorer.<locals>.h�s3���"�v�g�a�[�"�R���B����r�!�A�q�D�&�Q�S�Src�����j� fi���dz }d�jz}�dkr |dz}|dz}�xj�z c_� dzdz }�xj�zc_|gdgggggdf}|� gddgggdg�j�jg|f}||fS)Nr0r�rrrr�r)rr'r rr�) r�r*r4rarbr r�rGr�rs �����r r-z_scorer.<locals>.h�s���� �C�J�q� #� #�F� #� #�A� %�� �s�v�I�� �A�:�:� ��F�A� ��G�A� ���I���� �q�D��F�� ���I�����S�1�#�r�2�r�2�q� (����U�R��F�B��Q�C�#�+�c�k�)B�A� E���2�v� r)r7�isinfrDrUrOr3r6r:r�rAr?�argr'r>r r�)r rr�rGr-r�s```` @r �_scorerr;�s-������� � � �A���A� �y�y��|�|�2� ���<�<���z�z�!�A�#�:���z�z�!�8� ���=�=��Q�3�J��0�1�1�1�����3�s�3�7�7�1�:�:�~�.�.�/�/� � �� � �z�z�,���"�!�!�  � �7�7�1�:�:��>�>���z�z�c�#�'�'�!�*�*�o�o���q��5�0@�@�@�S�S�S�S�S�S��}�}�Q��S�X�D�}�Q�Q�Q���z�z�c�#�'�'�1�"�+�+�.�.��3�6��!��e�1C�C�C�T�T�T�T�T�T��}�}�Q��S�X�D�}�Q�Q�Q��� � � � � � �� ���� � � � � � � � � � �3�=��B� )� )�&� )� )�)s�A3F�6AF� F#�"F#c �&�t||d|��Sr��r;�r rrGs r �scorergir?���� �3��1�f� %� %�%rc �&�t||d|��Sr�r=r>s r �scorerhirB�r@rc�"�||f|vr*|||fd|jkr|||fd S|�d|zdz��}|�d|z|j|zz��}|�d|z|j|zz ��}d|z|�|j |z|z|zdz |z ��z}|�|��s*|�|��s|�|��}|j|f|||f<|S)Nrrr)r �loggammarkrer'rSrC)r �l�eta�_cache�G3�G1�G2rJs r �coulombcrK�s�� �3�x�6���f�Q�s�U�m�A�.�#�(�:�:��q��u� �a� � � � ���a��c�!�e� � �B� ���a��c�#�%��)�m� $� $�B� ���a��c�#�%��)�m� $� $�B� �1��s�w�w����� �B��r�)�1�,�r�1�2�2�2�A� �F�F�1�I�I��������� �F�F�1�I�I���X�q�M�F�1�S�5�M� �HrTc ��������fd�}�j|||gfi|��}|rm��|��sX��|��sC�����s.�����dkr��|��}|S)Nc�P�� �j�z}��|� d���}��|dd���}��||��}|� ��|��gd|dzdgggd|z||zzgd|zdzg|f}n#t$rdgdgggggdf}YnwxYw|fS)NTr"r�rrrr)rkr&rKrerO) rErF�jw�jwz�jwz2r�rar r4rs ���r r-zcoulombf.<locals>.h�s���� .���q��B��(�(�2�q��(�-�-�C��8�8�C��4�8�0�0�D�� � �Q��$�$�A��Q����� � �%��1�Q�3��{�B��Q�q�S��C��Z�L��1��Q�����B�B��� .� .� .���r�d�B��B��A�-�B�B�B� .�����u� s�BB � B"�!B"r)r>rSrC� r rErFrr4�choprGr-rJs ` `` r �coulombfrS�s������ � � � � � � � �� �a�!�C��+�+�F�+�+�A� ��S�V�V�A�Y�Y���������s�v�v�a�y�y�� ������a��� �F�F�1�I�I�� �Hrc��������f|vr)|��fd�jkr|��fdS���fd�}��|d��}�j|f|��f<|S)Nrrc�*��� dz }�j�z}��d�z|z��dz��d�z|z ��dz��d|z|z��dz��d|z|z ��dz�dz �jzgS)Nry��y�?r$)rkrDr')�l2�jetar rFrEs ���r �termsz_coulomb_chi.<locals>.terms�s�����R��T���u�S�y��� � �Q�q�S��X�&�&�%�0� �L�L��1��T�� "� "�d� +� �L�L��2��d�� #� #�t� ,� �L�L��2��d�� #� #�u� -���e�H�S�V�O� � r)r �sum_accurately)r rErFrGrXrJs``` r � _coulomb_chirZ�s������ �3�x�6���f�Q�s�U�m�A�.�#�(�:�:��a��e�}�Q���������� ���5�!�$�$�A��X�q�M�F�1�S�5�M� �Hrc �n������|��s��|��}���fd�}�j|||gfi|��}|rm��|��sX��|��sC�����s.�����dkr��|��}|S)Nc�h��� �|dz��rdgdgggggdf}|fS| dz } � �||��}� j�z}� �|��}� �|��}� �||��}� �||��} � �|�z��} d|z�z} ||�| |gdd|dzddgggd|z||zzgd|zdzg| f}| | �| gdd|dzdgggd|z||zzgd|zdzg| f} || fS#t$rdgdgggggdf}|fcYSwxYw)Nrrrrr�)r8rZrkr\r[rKrerO)rErFrarV�chirNr�r�r�r�r�r rbr r4rs ���r r-zcoulombg.<locals>.h�s���� �9�9�Q�q�S�>�>� ���r�d�B��B��A�-�B��5�L��R��T�� ��"�"�1�c�*�*�C���q��B����� � �A�#�'�'�#�,�,�a����a��$�$�B����b��%�%�B�����1�� � �A��2��a��A��R��A�q�!�B��1�Q�3��1�#5�r�2��1��R��V�� �q��s�1�u�g�q�)�B��"�b�!�Q��B��2�a�4��#3��B��2��b��f�� ��"��Q��x��+�B��r�6�M��� � � ���r�d�B��B��A�-�B��5�L�L�L� ���s�C&D�D1�0D1r)�_imr9r>rQs ` `` r �coulombgr_�s������ �7�7�1�:�:�� �G�G�A�J�J���������, �� �a�!�C��+�+�F�+�+�A� ��S�W�W�Q�Z�Z��#�'�'�#�,�,��������� ������q��� �G�G�A�J�J�� �Hrc��d|dzz}|dkr|sd|zd|zzdz |jzdz }|dkr|sd|zd|zzdz |jzdz }|dkr|rd|zd|zzdz |jzdz }|dkr|rd|zd|zzdz |jzdz }|s�|}|dz d|zz }d|dz zd|zdz zdd|zdzzz } d |dz zd |dzzd |zz d zzd d|zdzzz } d|dz zd|dzzd|dzzz d|zzdz zdd|zdzzz } |r�|}|dz d|zz }dd|dzzd|zzdz zdd|zdzzz } d d |dzzd|dzzzd|zz dzzd d|zdzzz } dd|dzzd|dzzzd|dzzz d|zzdz zdd|zdzzz } ||| | | g} |} d}tdt| ����D]R}t| |��t| |dz ��kr | | |z } �=t| |��}�S|t| ��dz krt| d��}| |fS) aj Computes an estimate for the location of the Bessel function zero j_{v,m}, y_{v,m}, j'_{v,m} or y'_{v,m} using McMahon's asymptotic expansion (Abramowitz & Stegun 9.5.12-13, DLMF 20.21(vi)). Returns (r,err) where r is the estimated location of the root and err is a positive number estimating the error of the asymptotic expansion. r�rrr0r#�����r��i�����Si�i�rri����i%i�XiO2iu�_�i�Rr�ii� i� i,�i il"qi�QYgr)r'r<�lenr?)r �kind�primerJrZr�r~�s1�s2�s3�s4�s5rXr��err�is r �mcmahonrps�� �!�Q�$��A� �q�y�y��y�Q�q�S��1��W�Q�Y���$6�q�$8�� �q�y�y��y�Q�q�S��1��W�Q�Y���$6�q�$8�� �q�y�y�U�y��1��Q�q�S����C�F� 2�1� 4�A� �q�y�y�U�y��1��Q�q�S����C�F� 2�1� 4�A� �P� ����s�V�Q�q�S�\�� ��1��X�q��s�2�v� ��1�Q�3��(� � +�� �!�A�#�Y��1�a�4���A�� �d�*� +�R��1��q��[� 9�� �!�A�#�Y��Q��T� �&��A��+�-�g�a�i�7��?� @�#�q��s�Q�h�,� O�� �W� ����s�V�Q�q�S�\�� ��1�a�4���1���Q�� ��A�a�C�!�8�� ,�� �"�Q��T�'�$�q�!�t�)�#�D��F�*�4�/� 0�"�a��c�A�X�+� >�� �$�q�!�t�)�F�1�a�4�K�'���1�� �4�W�Q�Y�>�w�F� G��a�PQ�c�TU�X�� V�� ��2�b�� �E� �A� �C� �1�S��Z�Z� � � � �� �u�Q�x�=�=�3�u�Q�q�S�z�?�?� *� *� ��q��M�A�A��e�A�h�-�-�C�C��C��J�J�q�L����%��)�n�n�� �c�6�Mrc������|dkrtd���|dz}g�g� ��|||�����fd��D�����fd�t|dz ��D��}t|��|kr|S|dz}�`)z� Given f known to have exactly n simple roots within [a,b], return a list of n intervals isolating the roots and having opposite signs at the endpoints. TODO: this can be optimized, e.g. by reusing evaluation points. rzn cannot be less than 1c�L��g|] }���|������!Sr`)�sign)rr r r�s ��r � <listcomp>z)generalized_bisection.<locals>.<listcomp>Js+���0�0�0�A����!�!�A�$�$���0�0�0rc�f��g|]-}�|�|dzzdk��|�|dzf��.S)rrr`)rro�points�signss ��r rtz)generalized_bisection.<locals>.<listcomp>KsO���*�*�*�A��Q�x��a��c� �"�b�(�(� ���6�!�A�#�;�/�(�(�(rr)rO�linspacer<rf) r r�r}r~r�N� ok_intervalsrvrws `` @@r �generalized_bisectionr{;s������� �1�u�u��2�3�3�3� �!��A� �F� �E�����a��!�$�$��0�0�0�0�0��0�0�0��*�*�*�*�*��q��s���*�*�*� � �|� � �� !� !�� � �a�C��rc�4�|�||dd���S)N�illinoisF)�solver�verify)r')r r��abs r �find_in_intervalr�Qs�� �<�<��2�j��<� ?� ?�?rg{�G�z�?c �����j}t|�������|����dz} |�_������t |��}t |��}�dkrt d���|dkrt d���|dvrt d���|dkr|r��fd�} n��fd �} |d kr|r��fd �} n��fd �} |dkrf|rd|dkr^�dkr�j|�_S�dkrDd ���d�zz�d zz ��z} t�| | dz d | zf��|�_S||�|f|vr"t�| |||�|f��|�_St�||�|��\} } | |kr t�| | |z | |zf��|�_S|dkr|sd } |dkr|rd} |d kr|sd} |d kr|rd} |dz} t�||�| ��\}} | |krtt�||�| dz��\}}t�| | d||zz| ��}t|��D]\}}||||�|dzf<�t�| ||dz ��|�_S| d z} ��#|�_wxYw)Nr.rzv cannot be negativerzm cannot be less than 1rz prime should lie between 0 and 1c�4�����|d���S�Nr)rFr�r r rJs ��r r!zbessel_zero.<locals>.<lambda>c����C�K�K��!�q�K�$A�$A�rc�0�����|��Srirr�s ��r r!zbessel_zero.<locals>.<lambda>d����C�K�K��!�$4�$4�rrc�4�����|d���Sr��r]r�s ��r r!zbessel_zero.<locals>.<lambda>fr�rc�0�����|��Srir�r�s ��r r!zbessel_zero.<locals>.<lambda>gr�rg333333@g�������?g�������?g@r$) r r3r:r=r6rO�zeror�r�rpr{� enumerate)r rgrhrJrZ�isoltol�_interval_cacher �workprecr�r)rn�lowr�r1�r2�err2� intervalsrr�s` ` r � bessel_zeror�TsP���� �8�D��4�������S�W�W�Q�Z�Z�0�0��3�H�0���� �G�G�A�J�J�� ��F�F���E� � �� �q�5�5��3�4�4� 4� �q�5�5��6�7�7� 7���~�~��?�@�@� @� �1�9�9�� 5�A�A�A�A�A�a�a�4�4�4�4�4�a� �1�9�9�� 5�A�A�A�A�A�a�a�4�4�4�4�4�a� �1�9�9��9�1��6�6��A�v�v��x�6����5�A�v�v��c�h�h�q�!�A�#�w��!��}�-�-�-��'��Q��2��q��s� �<�<�.����- ��q�� �� .� .�#�C��O�D��q��N�,K�L�L�*����)��d�E�1�a�0�0���3� ��=�=�#�C��Q�w�Y��'� �,B�C�C�$����! �1�9�9�U�9�#�C� �1�9�9��9�c�� �1�9�9�U�9�#�C� �1�9�9��9�c�� �a�C�� ��c�4���1�5�5�G�B���W�}�}�"�3��e�Q��!��<�<���D�1�#�q�#�s�B�r�E�{�A�N�N� �&�y�1�1�;�;�E�A�r�8:�O�D��q��1��$4�5�5�'��Q� �!�A�#��?�?������a�C�� ��������s-�B;I<�AI<�"I<�<4I<�8B6I<�6I<�< Jc�*�t|d|||�� S)a� For a real order `\nu \ge 0` and a positive integer `m`, returns `j_{\nu,m}`, the `m`-th positive zero of the Bessel function of the first kind `J_{\nu}(z)` (see :func:`~mpmath.besselj`). Alternatively, with *derivative=1*, gives the first nonnegative simple zero `j'_{\nu,m}` of `J'_{\nu}(z)`. The indexing convention is that used by Abramowitz & Stegun and the DLMF. Note the special case `j'_{0,1} = 0`, while all other zeros are positive. In effect, only simple zeros are counted (all zeros of Bessel functions are simple except possibly `z = 0`) and `j_{\nu,m}` becomes a monotonic function of both `\nu` and `m`. The zeros are interlaced according to the inequalities .. math :: j'_{\nu,k} < j_{\nu,k} < j'_{\nu,k+1} j_{\nu,1} < j_{\nu+1,2} < j_{\nu,2} < j_{\nu+1,2} < j_{\nu,3} < \cdots **Examples** Initial zeros of the Bessel functions `J_0(z), J_1(z), J_2(z)`:: >>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> besseljzero(0,1); besseljzero(0,2); besseljzero(0,3) 2.404825557695772768621632 5.520078110286310649596604 8.653727912911012216954199 >>> besseljzero(1,1); besseljzero(1,2); besseljzero(1,3) 3.831705970207512315614436 7.01558666981561875353705 10.17346813506272207718571 >>> besseljzero(2,1); besseljzero(2,2); besseljzero(2,3) 5.135622301840682556301402 8.417244140399864857783614 11.61984117214905942709415 Initial zeros of `J'_0(z), J'_1(z), J'_2(z)`:: 0.0 3.831705970207512315614436 7.01558666981561875353705 >>> besseljzero(1,1,1); besseljzero(1,2,1); besseljzero(1,3,1) 1.84118378134065930264363 5.331442773525032636884016 8.536316366346285834358961 >>> besseljzero(2,1,1); besseljzero(2,2,1); besseljzero(2,3,1) 3.054236928227140322755932 6.706133194158459146634394 9.969467823087595793179143 Zeros with large index:: >>> besseljzero(0,100); besseljzero(0,1000); besseljzero(0,10000) 313.3742660775278447196902 3140.807295225078628895545 31415.14114171350798533666 >>> besseljzero(5,100); besseljzero(5,1000); besseljzero(5,10000) 321.1893195676003157339222 3148.657306813047523500494 31422.9947255486291798943 >>> besseljzero(0,100,1); besseljzero(0,1000,1); besseljzero(0,10000,1) 311.8018681873704508125112 3139.236339643802482833973 31413.57032947022399485808 Zeros of functions with large order:: >>> besseljzero(50,1) 57.11689916011917411936228 >>> besseljzero(50,2) 62.80769876483536093435393 >>> besseljzero(50,100) 388.6936600656058834640981 >>> besseljzero(50,1,1) 52.99764038731665010944037 >>> besseljzero(50,2,1) 60.02631933279942589882363 >>> besseljzero(50,100,1) 387.1083151608726181086283 Zeros of functions with fractional order:: >>> besseljzero(0.5,1); besseljzero(1.5,1); besseljzero(2.25,4) 3.141592653589793238462643 4.493409457909064175307881 15.15657692957458622921634 Both `J_{\nu}(z)` and `J'_{\nu}(z)` can be expressed as infinite products over their zeros:: >>> v,z = 2, mpf(1) >>> (z/2)**v/gamma(v+1) * \ ... nprod(lambda k: 1-(z/besseljzero(v,k))**2, [1,inf]) ... 0.1149034849319004804696469 >>> besselj(v,z) 0.1149034849319004804696469 >>> (z/2)**(v-1)/2/gamma(v) * \ ... nprod(lambda k: 1-(z/besseljzero(v,k,1))**2, [1,inf]) ... 0.2102436158811325550203884 >>> besselj(v,z,1) 0.2102436158811325550203884 r�r��r rJrZrFs r � besseljzeror��s��` ��Q� �A�q� 1� 1� 1�1rc�*�t|d|||�� S)a� For a real order `\nu \ge 0` and a positive integer `m`, returns `y_{\nu,m}`, the `m`-th positive zero of the Bessel function of the second kind `Y_{\nu}(z)` (see :func:`~mpmath.bessely`). Alternatively, with *derivative=1*, gives the first positive zero `y'_{\nu,m}` of `Y'_{\nu}(z)`. The zeros are interlaced according to the inequalities .. math :: y_{\nu,k} < y'_{\nu,k} < y_{\nu,k+1} y_{\nu,1} < y_{\nu+1,2} < y_{\nu,2} < y_{\nu+1,2} < y_{\nu,3} < \cdots **Examples** Initial zeros of the Bessel functions `Y_0(z), Y_1(z), Y_2(z)`:: >>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> besselyzero(0,1); besselyzero(0,2); besselyzero(0,3) 0.8935769662791675215848871 3.957678419314857868375677 7.086051060301772697623625 >>> besselyzero(1,1); besselyzero(1,2); besselyzero(1,3) 2.197141326031017035149034 5.429681040794135132772005 8.596005868331168926429606 >>> besselyzero(2,1); besselyzero(2,2); besselyzero(2,3) 3.384241767149593472701426 6.793807513268267538291167 10.02347797936003797850539 Initial zeros of `Y'_0(z), Y'_1(z), Y'_2(z)`:: >>> besselyzero(0,1,1); besselyzero(0,2,1); besselyzero(0,3,1) 2.197141326031017035149034 5.429681040794135132772005 8.596005868331168926429606 >>> besselyzero(1,1,1); besselyzero(1,2,1); besselyzero(1,3,1) 3.683022856585177699898967 6.941499953654175655751944 10.12340465543661307978775 >>> besselyzero(2,1,1); besselyzero(2,2,1); besselyzero(2,3,1) 5.002582931446063945200176 8.350724701413079526349714 11.57419546521764654624265 Zeros with large index:: >>> besselyzero(0,100); besselyzero(0,1000); besselyzero(0,10000) 311.8034717601871549333419 3139.236498918198006794026 31413.57034538691205229188 >>> besselyzero(5,100); besselyzero(5,1000); besselyzero(5,10000) 319.6183338562782156235062 3147.086508524556404473186 31421.42392920214673402828 >>> besselyzero(0,100,1); besselyzero(0,1000,1); besselyzero(0,10000,1) 313.3726705426359345050449 3140.807136030340213610065 31415.14112579761578220175 Zeros of functions with large order:: >>> besselyzero(50,1) 53.50285882040036394680237 >>> besselyzero(50,2) 60.11244442774058114686022 >>> besselyzero(50,100) 387.1096509824943957706835 >>> besselyzero(50,1,1) 56.96290427516751320063605 >>> besselyzero(50,2,1) 62.74888166945933944036623 >>> besselyzero(50,100,1) 388.6923300548309258355475 Zeros of functions with fractional order:: >>> besselyzero(0.5,1); besselyzero(1.5,1); besselyzero(2.25,4) 1.570796326794896619231322 2.798386045783887136720249 13.56721208770735123376018 rr�r�s r � besselyzeror��s��r ��Q� �A�q� 1� 1� 1�1rN)r)F)rF)rT)2� functionsrrr rrrQr]rgrmrprtrxrvr�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r�r rr+r.r0r;r?rBrKrSrZr_rpr{r�r�r�r�r`rr �<module>r�s)��+�+�+�+�+�+�+�+��������������@ �@ �@ ���@ �D�! �! �! ���! �F�!3�!3�!3���!3�F�+�+���+�,�G�G���G��G�G���G�� C� C��� C�� C� C��� C��-�-���-�8�+�+���+��+�+���+�+�+�+�&�*�*���*��*�*���*�� -� -��� -��-�-���-�8� +� +��� +�� +� +��� +�� +� +��� +�� +� +��� +� � � ��7�7���7��8�8���8��<�<���<��6�6���6����"�"�"�,�Y.�Y.�Y.���Y.�v�I.�I.�I.���I.�V+�+�+�+�8�4�4�4���4��6�6�6���6�)*�)*�)*�V�&�&���&��&�&���&��!#�  �  �  ���  �� � � ��� �,�%'�  �  �  ���  ��  �  �  ���  �D%�%�%�N���,@�@�@�15�b�3�3�3�3�j�o2�o2�o2���o2�b�X2�X2�X2���X2�X2�X2r
Memory