"""SageMakerMetricsBackend class with methods for supported APIs."""
from datetime import datetime
from typing import Dict, List, Union, cast
from moto.core.base_backend import BackendDict, BaseBackend
from moto.sagemaker import sagemaker_backends
from moto.sagemaker.models import METRIC_STEP_TYPE
RESPONSE_TYPE = Dict[str, List[Dict[str, Union[str, int]]]]
class SageMakerMetricsBackend(BaseBackend):
"""Implementation of SageMakerMetrics APIs."""
def __init__(self, region_name: str, account_id: str) -> None:
super().__init__(region_name, account_id)
self.sagemaker_backend = sagemaker_backends[account_id][region_name]
def batch_put_metrics(
self,
trial_component_name: str,
metric_data: List[Dict[str, Union[str, int, float, datetime]]],
) -> RESPONSE_TYPE:
return_response: RESPONSE_TYPE = {"Errors": []}
if trial_component_name not in self.sagemaker_backend.trial_components:
return_response["Errors"].append(
{"Code": "VALIDATION_ERROR", "MetricIndex": 0}
)
return return_response
trial_component = self.sagemaker_backend.trial_components[trial_component_name]
for metric in metric_data:
metric_step: int = cast(int, metric["Step"])
metric_name: str = cast(str, metric["MetricName"])
if metric_name not in trial_component.metrics:
metric_timestamp: int = cast(int, metric["Timestamp"])
values_dict: Dict[int, Dict[str, Union[str, int, float, datetime]]] = {}
new_metric: Dict[str, Union[str, int, METRIC_STEP_TYPE]] = {
"MetricName": metric_name,
"Timestamp": metric_timestamp,
"Values": values_dict,
}
trial_component.metrics[metric_name] = new_metric
new_step: METRIC_STEP_TYPE = {metric_step: metric}
trial_component_metric_values: METRIC_STEP_TYPE = cast(
METRIC_STEP_TYPE, trial_component.metrics[metric_name]["Values"]
)
trial_component_metric_values.update(new_step) # type ignore
return return_response
sagemakermetrics_backends = BackendDict(SageMakerMetricsBackend, "sagemaker-metrics")