import hypothesis.stateful import hypothesis.strategies from overrides import overrides import pytest import logging import hypothesis import hypothesis.strategies as st from hypothesis import given, settings, HealthCheck from typing import Dict, Set, cast, Union, DefaultDict, Any, List from dataclasses import dataclass from chromadb.api.types import ( ID, Embeddings, Include, IDs, validate_embeddings, normalize_embeddings, ) from chromadb.config import System import chromadb.errors as errors from chromadb.api import ClientAPI from chromadb.api.models.Collection import Collection import chromadb.test.property.strategies as strategies from hypothesis.stateful import ( Bundle, RuleBasedStateMachine, MultipleResults, rule, initialize, precondition, consumes, run_state_machine_as_test, multiple, invariant, ) from collections import defaultdict import chromadb.test.property.invariants as invariants from chromadb.test.conftest import is_client_in_process, reset, NOT_CLUSTER_ONLY import numpy as np import uuid from chromadb.test.utils.wait_for_version_increase import ( wait_for_version_increase, get_collection_version, ) traces: DefaultDict[str, int] = defaultdict(lambda: 0) def trace(key: str) -> None: global traces traces[key] += 1 def print_traces() -> None: global traces for key, value in traces.items(): print(f"{key}: {value}") dtype_shared_st: st.SearchStrategy[ Union[np.float16, np.float32, np.float64] ] = st.shared(st.sampled_from(strategies.float_types), key="dtype") dimension_shared_st: st.SearchStrategy[int] = st.shared( st.integers(min_value=2, max_value=2048), key="dimension" ) @dataclass class EmbeddingStateMachineStates: initialize = "initialize" add_embeddings = "add_embeddings" delete_by_ids = "delete_by_ids" update_embeddings = "update_embeddings" upsert_embeddings = "upsert_embeddings" collection_st = st.shared(strategies.collections(with_hnsw_params=True), key="coll") class EmbeddingStateMachineBase(RuleBasedStateMachine): collection: Collection embedding_ids: Bundle[ID] = Bundle("embedding_ids") has_collection_mutated = False def __init__(self, client: ClientAPI): super().__init__() self.client = client self._rules_strategy = hypothesis.stateful.RuleStrategy(self) # type: ignore @initialize(collection=collection_st) # type: ignore def initialize(self, collection: strategies.Collection): self.collection = self.client.create_collection( name=collection.name, metadata=collection.metadata, # type: ignore[arg-type] embedding_function=collection.embedding_function, ) self.embedding_function = collection.embedding_function trace("init") self.on_state_change(EmbeddingStateMachineStates.initialize) self.record_set_state = strategies.StateMachineRecordSet( ids=[], metadatas=[], documents=[], embeddings=[] ) @overrides def teardown(self) -> None: self.client.delete_collection(self.collection.name) @rule( target=embedding_ids, record_set=strategies.recordsets(collection_st), ) def add_embeddings(self, record_set: strategies.RecordSet) -> MultipleResults[ID]: trace("add_embeddings") self.on_state_change(EmbeddingStateMachineStates.add_embeddings) normalized_record_set: strategies.NormalizedRecordSet = invariants.wrap_all( record_set ) if len(normalized_record_set["ids"]) > 0: trace("add_more_embeddings") intersection = set(normalized_record_set["ids"]).intersection( self.record_set_state["ids"] ) if len(intersection) > 0: # Partially apply the non-duplicative records to the state new_ids = list(set(normalized_record_set["ids"]).difference(intersection)) indices = [normalized_record_set["ids"].index(id) for id in new_ids] filtered_record_set: strategies.NormalizedRecordSet = { "ids": [normalized_record_set["ids"][i] for i in indices], "metadatas": [normalized_record_set["metadatas"][i] for i in indices] if normalized_record_set["metadatas"] else None, "documents": [normalized_record_set["documents"][i] for i in indices] if normalized_record_set["documents"] else None, "embeddings": [normalized_record_set["embeddings"][i] for i in indices] if normalized_record_set["embeddings"] else None, } self.collection.add(**normalized_record_set) # type: ignore[arg-type] self._upsert_embeddings(cast(strategies.RecordSet, filtered_record_set)) return multiple(*filtered_record_set["ids"]) else: self.collection.add(**normalized_record_set) # type: ignore[arg-type] self._upsert_embeddings(cast(strategies.RecordSet, normalized_record_set)) return multiple(*normalized_record_set["ids"]) @rule(ids=st.lists(consumes(embedding_ids), min_size=1)) def delete_by_ids(self, ids: IDs) -> None: trace("remove embeddings") self.on_state_change(EmbeddingStateMachineStates.delete_by_ids) indices_to_remove = [self.record_set_state["ids"].index(id) for id in ids] self.collection.delete(ids=ids) self._remove_embeddings(set(indices_to_remove)) # Removing the precondition causes the tests to frequently fail as "unsatisfiable" # Using a value < 5 causes retries and lowers the number of valid samples @precondition(lambda self: len(self.record_set_state["ids"]) >= 5) @rule( record_set=strategies.recordsets( collection_strategy=collection_st, id_strategy=embedding_ids, min_size=1, max_size=5, ), ) def update_embeddings(self, record_set: strategies.RecordSet) -> None: trace("update embeddings") self.on_state_change(EmbeddingStateMachineStates.update_embeddings) self.collection.update(**record_set) # type: ignore[arg-type] self._upsert_embeddings(record_set) # Using a value < 3 causes more retries and lowers the number of valid samples @precondition(lambda self: len(self.record_set_state["ids"]) >= 3) @rule( record_set=strategies.recordsets( collection_strategy=collection_st, id_strategy=st.one_of(embedding_ids, strategies.safe_text), min_size=1, max_size=5, ) ) def upsert_embeddings(self, record_set: strategies.RecordSet) -> None: trace("upsert embeddings") self.on_state_change(EmbeddingStateMachineStates.upsert_embeddings) self.collection.upsert(**record_set) # type: ignore[arg-type] self._upsert_embeddings(record_set) @invariant() def count(self) -> None: invariants.count( self.collection, cast(strategies.RecordSet, self.record_set_state) ) @invariant() def no_duplicates(self) -> None: invariants.no_duplicates(self.collection) @invariant() def ann_accuracy(self) -> None: invariants.ann_accuracy( collection=self.collection, record_set=cast(strategies.RecordSet, self.record_set_state), min_recall=0.95, embedding_function=self.embedding_function, ) @invariant() def fields_match(self) -> None: if self._is_state_empty(): # Check that the collection is empty assert self.collection.count() == 0 else: # RecordSet is a superset of StateMachineRecordSet record_set_state = cast(strategies.RecordSet, self.record_set_state) invariants.embeddings_match(self.collection, record_set_state) invariants.metadatas_match(self.collection, record_set_state) invariants.documents_match(self.collection, record_set_state) @precondition( lambda self: is_client_in_process(self.client) ) # (Can't check the log size on HTTP clients) @invariant() def log_size_below_max(self) -> None: system: System = self.client._system # type: ignore invariants.log_size_below_max( system, [self.collection], self.has_collection_mutated ) def _is_state_empty(self) -> bool: for field in self.record_set_state.values(): if field: return False return True def _upsert_embeddings(self, record_set: strategies.RecordSet) -> None: normalized_record_set: strategies.NormalizedRecordSet = invariants.wrap_all( record_set ) for idx, id in enumerate(normalized_record_set["ids"]): # Update path if id in self.record_set_state["ids"]: target_idx = self.record_set_state["ids"].index(id) if normalized_record_set["embeddings"] is not None: self.record_set_state["embeddings"][ target_idx ] = normalized_record_set["embeddings"][idx] else: assert normalized_record_set["documents"] is not None assert self.embedding_function is not None self.record_set_state["embeddings"][ target_idx ] = self.embedding_function( [normalized_record_set["documents"][idx]] )[ 0 ] if normalized_record_set["metadatas"] is not None: # Sqlite merges the metadata, as opposed to old # implementations which overwrites it record_set_state = self.record_set_state["metadatas"][target_idx] if record_set_state is not None: record_set_state = cast( Dict[str, Union[str, int, float]], record_set_state ) if normalized_record_set["metadatas"][idx] is not None: record_set_state.update( normalized_record_set["metadatas"][idx] # type: ignore[arg-type] ) else: # None in the update metadata is a no-op pass else: self.record_set_state["metadatas"][ target_idx ] = normalized_record_set["metadatas"][idx] if normalized_record_set["documents"] is not None: self.record_set_state["documents"][ target_idx ] = normalized_record_set["documents"][idx] else: # Add path self.record_set_state["ids"].append(id) if normalized_record_set["embeddings"] is not None: self.record_set_state["embeddings"].append( normalized_record_set["embeddings"][idx] ) else: assert self.embedding_function is not None assert normalized_record_set["documents"] is not None self.record_set_state["embeddings"].append( self.embedding_function( [normalized_record_set["documents"][idx]] )[0] ) if normalized_record_set["metadatas"] is not None: self.record_set_state["metadatas"].append( normalized_record_set["metadatas"][idx] ) else: self.record_set_state["metadatas"].append(None) if normalized_record_set["documents"] is not None: self.record_set_state["documents"].append( normalized_record_set["documents"][idx] ) else: self.record_set_state["documents"].append(None) def _remove_embeddings(self, indices_to_remove: Set[int]) -> None: indices_list = list(indices_to_remove) indices_list.sort(reverse=True) for i in indices_list: del self.record_set_state["ids"][i] del self.record_set_state["embeddings"][i] del self.record_set_state["metadatas"][i] del self.record_set_state["documents"][i] def on_state_change(self, new_state: str) -> None: if new_state != EmbeddingStateMachineStates.initialize: self.has_collection_mutated = True class EmbeddingStateMachine(EmbeddingStateMachineBase): embedding_ids: Bundle[ID] = Bundle("embedding_ids") def __init__(self, client: ClientAPI): super().__init__(client) @initialize(collection=collection_st) # type: ignore def initialize(self, collection: strategies.Collection): super().initialize(collection) print( "[test_embeddings][initialize] Initialize collection id ", self.collection._model["id"], " hypothesis generated collection id ", collection.id, ) self.log_operation_count = 0 self.unique_ids_in_log: Set[ID] = set() self.collection_version = self.collection.get_model()["version"] @precondition( lambda self: not NOT_CLUSTER_ONLY and self.log_operation_count > 10 and len(self.unique_ids_in_log) > 3 ) @rule() def wait_for_compaction(self) -> None: current_version = get_collection_version(self.client, self.collection.name) assert current_version >= self.collection_version # type: ignore[operator] # This means that there was a compaction from the last time this was # invoked. Ok to start all over again. if current_version > self.collection_version: # type: ignore[operator] print( "[test_embeddings][wait_for_compaction] collection version has changed, so reset to 0" ) self.collection_version = current_version # This is fine even if the log has some records right now self.log_operation_count = 0 self.unique_ids_in_log = set() else: print( "[test_embeddings][wait_for_compaction] wait for version to increase from current version ", current_version, ) new_version = wait_for_version_increase( self.client, self.collection.name, current_version, additional_time=240 ) # Everything got compacted. self.log_operation_count = 0 self.unique_ids_in_log = set() self.collection_version = new_version @rule( target=embedding_ids, record_set=strategies.recordsets(collection_st), ) def add_embeddings(self, record_set: strategies.RecordSet) -> MultipleResults[ID]: res = super().add_embeddings(record_set) normalized_record_set: strategies.NormalizedRecordSet = invariants.wrap_all( record_set ) print( "[test_embeddings][add] Non Intersection ids ", normalized_record_set["ids"], " len ", len(normalized_record_set["ids"]), ) self.log_operation_count += len(normalized_record_set["ids"]) for id in normalized_record_set["ids"]: if id not in self.unique_ids_in_log: self.unique_ids_in_log.add(id) return res # type: ignore[return-value] @rule(ids=st.lists(consumes(embedding_ids), min_size=1)) def delete_by_ids(self, ids: IDs) -> None: super().delete_by_ids(ids) print("[test_embeddings][delete] ids ", ids, " len ", len(ids)) self.log_operation_count += len(ids) for id in ids: if id in self.unique_ids_in_log: self.unique_ids_in_log.remove(id) # Removing the precondition causes the tests to frequently fail as "unsatisfiable" # Using a value < 5 causes retries and lowers the number of valid samples @precondition(lambda self: len(self.record_set_state["ids"]) >= 5) @rule( record_set=strategies.recordsets( collection_strategy=collection_st, id_strategy=embedding_ids, min_size=1, max_size=5, ), ) def update_embeddings(self, record_set: strategies.RecordSet) -> None: super().update_embeddings(record_set) print( "[test_embeddings][update] ids ", record_set["ids"], " len ", len(invariants.wrap(record_set["ids"])), ) self.log_operation_count += len(invariants.wrap(record_set["ids"])) # Using a value < 3 causes more retries and lowers the number of valid samples @precondition(lambda self: len(self.record_set_state["ids"]) >= 3) @rule( record_set=strategies.recordsets( collection_strategy=collection_st, id_strategy=st.one_of(embedding_ids, strategies.safe_text), min_size=1, max_size=5, ) ) def upsert_embeddings(self, record_set: strategies.RecordSet) -> None: super().upsert_embeddings(record_set) print( "[test_embeddings][upsert] ids ", record_set["ids"], " len ", len(invariants.wrap(record_set["ids"])), ) self.log_operation_count += len(invariants.wrap(record_set["ids"])) for id in invariants.wrap(record_set["ids"]): if id not in self.unique_ids_in_log: self.unique_ids_in_log.add(id) def test_embeddings_state(caplog: pytest.LogCaptureFixture, client: ClientAPI) -> None: caplog.set_level(logging.ERROR) run_state_machine_as_test( lambda: EmbeddingStateMachine(client), settings=settings( deadline=90000, suppress_health_check=[HealthCheck.filter_too_much] ), ) # type: ignore print_traces() def test_add_then_delete_n_minus_1(client: ClientAPI) -> None: state = EmbeddingStateMachine(client) state.initialize( collection=strategies.Collection( name="A00", metadata={ "hnsw:construction_ef": 128, "hnsw:search_ef": 128, "hnsw:M": 128, }, embedding_function=None, id=uuid.uuid4(), dimension=2, dtype=np.float16, known_metadata_keys={}, known_document_keywords=[], has_documents=False, has_embeddings=True, ) ) state.ann_accuracy() state.count() state.fields_match() state.no_duplicates() v1, v2, v3, v4, v5, v6 = state.add_embeddings( # type: ignore[misc] record_set={ "ids": ["0", "1", "2", "3", "4", "5"], "embeddings": [ [0.09765625, 0.430419921875], [0.20556640625, 0.08978271484375], [-0.1527099609375, 0.291748046875], [-0.12481689453125, 0.78369140625], [0.92724609375, -0.233154296875], [0.92724609375, -0.233154296875], ], "metadatas": [None, None, None, None, None, None], "documents": None, } ) state.ann_accuracy() state.count() state.fields_match() state.no_duplicates() state.delete_by_ids(ids=[v1, v2, v3, v4, v5]) if not NOT_CLUSTER_ONLY: state.wait_for_compaction() state.ann_accuracy() state.count() state.fields_match() state.no_duplicates() state.teardown() def test_embeddings_flake1(client: ClientAPI) -> None: state = EmbeddingStateMachine(client) state.initialize( collection=strategies.Collection( name='fOIBy\n', metadata={ '-7n': False, '92WhVE_': 'HtmY', 'J-sW': 'RTip', 'wPGA8hY7uX': -171, '4rA': '5KdoaYsUQ_EWStV4', 'hnsw:construction_ef': 128, 'hnsw:search_ef': 128, 'hnsw:M': 128, }, embedding_function=None, id=uuid.UUID('ff006990-82c3-494b-97d5-cbb05092c861'), dimension=664, dtype=np.float16, known_metadata_keys={}, known_document_keywords=[], has_documents=False, has_embeddings=True ) ) state.ann_accuracy() state.count() state.fields_match() state.no_duplicates() embedding_ids_0, embedding_ids_1, embedding_ids_2, embedding_ids_3, embedding_ids_4, embedding_ids_5 = state.add_embeddings(record_set={'ids': ['kgaT4d', 'C2h2YoNSgUqRyE-Tmxf3MT', 'ODI-yO', 't', 'b', 'vC'], 'embeddings': [[0]*664, [0]*664, [0]*664, [0]*664, [0]*664, [0]*664], 'metadatas': [{'s': False, 'd1wQJV-9': -2_021_928_494, 'hWf7gwQ': '5DkqA9o6', 'rbyHg': 0.0, 'Pe': 251, '0r6qQ5XYxeq': -0.3333333432674408, 'PzXpiqB': 'VT'}, None, {'hqTZ6Ok767eCSwyvGEuig8a': -659321220, 'TRGxN': -0.3333333432674408, '1h8I': 'E'}, {'ATRs': -0.3333333432674408, 'KF0P': -23106}, {'PcFwu': -14169, 'PS': 0.0, 'WCgx': -13116, 'EQt': False, 'upcOfhu': -1.5, 'e': 'vReD', 'U': -2147, 'zI4tO': True, 'MfHM7uU58tW_muctZf': -22, 'SvOy': 2.220446049250313e-16}, {'iuTAKznMg6IdUKxaPi': -58907, 'oy': 'uDC', 'c0Zb3VTUktBu-uW': 'OcywKhsi', '6i': -42181, 'nn': 5.960464477539063e-08, 'bs': '-', 'om': -1000000.0, 'MXnpsEEE': True, 'Ful8JRj': -304752924, 'Hi7lrY': True}], 'documents': None}) state.ann_accuracy() # recall: 1.0, missing 0 out of 6, accuracy threshold 1e-06 state.count() state.fields_match() state.no_duplicates() (embedding_ids_6,) = state.add_embeddings(record_set={'ids': 'ua', 'embeddings': [[0]*664], 'metadatas': None, 'documents': None}) state.ann_accuracy() # recall: 1.0, missing 0 out of 7, accuracy threshold 1e-06 state.count() state.fields_match() state.no_duplicates() embedding_ids_7, embedding_ids_8 = state.add_embeddings(record_set={'ids': ['K_', 'yFsH'], 'embeddings': [[0]*664, [0]*664], 'metadatas': [None, {'RiaaN9MNpq': -634040344, 'g9Wx': True, 'uexOH': -2.220446049250313e-16, 'h2': True}], 'documents': None}) state.ann_accuracy() # recall: 1.0, missing 0 out of 9, accuracy threshold 1e-06 state.count() state.fields_match() state.no_duplicates() state.upsert_embeddings(record_set={'ids': ['SCeelWyLAWG_oHa', 'lY', '3'], 'embeddings': [[0]*664, [0]*664, [0]*664], 'metadatas': [{'0ZbYq40P': 448094799, 'OT9sTxkM': 9.999999747378752e-06, '-j': 158, 'rqsBEfrELJctJoVeLqtsPZp': -100, '5M4': 64676, 'XFt': 227, 'ii': 168135.75, 'ly': True}, {'Dy6': 'q7LZUW'}, {'fP': 'KuQG8m-T', 'APtmt': False, 'xKb6': -2_147_483_647, 'C': 'xGw', 'G18V': False, 's': True, 'c-': 'k', 'G92n': -7024, 'YTTBWs31rbM_L_PQDSCu': False, 'xOGzFeG': True, 'gh7cuT_ruA3mn': 883101.75}], 'documents': None}) state.ann_accuracy() # recall: 1.0, missing 0 out of 12, accuracy threshold 1e-06 state.count() state.fields_match() state.no_duplicates() state.upsert_embeddings(record_set={'ids': ['O3m3-X1', 'ZNt2PF6M5_q', 'Ij0Yh6', embedding_ids_1, embedding_ids_7], 'embeddings': [[0]*664, [0]*664, [0]*664, [0]*664, [0]*664], 'metadatas': [{'2fDAuv7': -46139, '4Et': 19926, '5hqGH60G-yZ6PWyM1B': False, 'OkMjjG': '34oWsr93EUl', 'yTk': 999999.0, 'wZvpmS5HbTAI': -9.999999747378752e-06, 'bvq': 'Xc80e', 'zPhL': 'e-QXuDdnxYMd'}, {'WK': -9.999999747378752e-06, 'y': 'g', 'GNZphPCKay88gsh3x_': 1.899999976158142}, {'_zVO2i-N': -40, 'tWHxo': False, 'ltu_E_fg': 'JDc', '9yGpik': -153}, {'otM8': 'ZnQ3ALwA', 'EGeKm': 50, 'skf71O0UKT': True, 'S8Kc8-l95Rpc': True, '4bGz1QmzbKVySN1yrXFl56CmDS08F': 1_284_815_517}, None], 'documents': None}) state.ann_accuracy() # recall: 1.0, missing 0 out of 15, accuracy threshold 1e-06 state.count() state.fields_match() state.no_duplicates() state.update_embeddings(record_set={'ids': [embedding_ids_1, embedding_ids_3, embedding_ids_8, embedding_ids_5, embedding_ids_6], 'embeddings': [[0]*664, [0]*664, [0]*664, [0]*664, [0]*664], 'metadatas': [{'hBFXAIA': False, 'Wx4dcB5': -35, '8w': False, '8': False, 'mwQ5': 'c7', 'G9g2': 'J', 'VY': True, 'VQGb_r-hzoA': -0.9999899864196777, 'M0lMig': True, 'F': True, 'J': 1.100000023841858, 'd': 'R', 'DugrcoZv': False, '45B': -2.0000100135803223, 'UG-sSV': False, 'cri4cT1G': -1_067_180_133, 'I': -4411, 'FqFWR__': False, '4': -23, 'vwo4WERBljY3aWjWnqL': 'xM0jUV4U2r', 'WF': 'msuFYMwj_SXc'}, None, {'m': -49054, 'f4': 239658268, 'Ut': False, 'V_NVCw': '5'}, {'VWuP': -9.999999747378752e-06, '7uF8': 127, '3': False}, {'a1': -6.103515625e-05, 'ML_Zl2Ir85KolESaX': False, 'iJvA': -1.5, 'O8o': 1_287_175_929, 'rMS': 200, '0': -1000000.0, '5AeE': 9.999999747378752e-06, '2q': True}], 'documents': None}) state.ann_accuracy() # recall: 1.0, missing 0 out of 15, accuracy threshold 1e-06 state.count() state.fields_match() state.no_duplicates() state.update_embeddings(record_set={'ids': [embedding_ids_1, embedding_ids_2, embedding_ids_8, embedding_ids_3], 'embeddings': [[0]*664, [0]*664, [0]*664, [0]*664], 'metadatas': [{'Yx': '6T9tEEC84', 'lGe5GMX': 3054}, {'UvsAljL5V5ELRv': True, embedding_ids_3: False, 'yeLTrhAIq': 1.5, 'iP': -0.5}, {'C': 'Ri'}, {'pzHn2': -9.999999747378752e-06, 'YfdftMEd0C5ekByb7mhdb': 9735, 'LJCViu': 333447280, 'LT': True, '5Y': False, 'OoVwE': False, 'vq': 1.899999976158142, '8Wf6': False}], 'documents': None}) state.ann_accuracy() # recall: 1.0, missing 0 out of 15, accuracy threshold 1e-06 state.count() state.fields_match() state.no_duplicates() state.update_embeddings(record_set={'ids': [embedding_ids_5], 'embeddings': [[0]*664], 'metadatas': {'C1KbOOlKkzzLo9CGU2': -1_379_550_593, 'NH': 'd', 'M': 'ebEKOx', 'fpu77F70Icl': True, 'dz6fI-Gpp': True, 'qVVW': -63204, 'Qrcq645F': 296029.46875}, 'documents': None}) state.ann_accuracy() # recall: 1.0, missing 0 out of 15, accuracy threshold 1e-06 state.count() state.fields_match() state.no_duplicates() embedding_ids_9, embedding_ids_10, embedding_ids_11, embedding_ids_12 = state.add_embeddings(record_set={'ids': ['F7', 'Rig1', 'RXi', '_nC8-'], 'embeddings': [[0]*664, [0]*664, [0]*664, [0]*664], 'metadatas': [{'FBtaPcQWV24v': -25365, 'ddLq1My3mbUL9I': 2019, 'fI': 908902.125, 'HLxuosT': False}, {'ATUP1': -1.5}, {'AhC': True, 'wm9AwP': -0.9999899864196777}, {'K': -33427}], 'documents': None}) state.ann_accuracy() # recall: 1.0, missing 0 out of 19, accuracy threshold 1e-06 state.count() state.fields_match() state.no_duplicates() state.upsert_embeddings(record_set={'ids': ['4GJ', 'r', 'Aunf5', embedding_ids_5], 'embeddings': [[0]*664, [0]*664, [0]*664, [0]*664], 'metadatas': [{'J8O0R8VGaY': True}, {'K2cCg': 5.960464477539063e-08, 'oObAcp': -2.0000100135803223, 'ax': 'nK67g', 'afzp': 1000000.0, 'xnRCSPJUF4JZ2sKOIRDc': True, 'nBaQ6F1O38etVMhss2angu-': 158622.671875}, {'UwbDWM2_': 9.999999747378752e-06, '3': -452142.625, 'nfoovt': 214128.375, 'elaMLbhEvW': 1.100000023841858, '0': 'iSNcMrT', 'UO': True, 'I': 176, '3ssGS4rSKXsKqRPFTBGrRPPsu': 1000000.0, 'Gw': False, 'V': True}, {'F': 'tTw'}], 'documents': None}) state.ann_accuracy() # recall: 1.0, missing 0 out of 22, accuracy threshold 1e-06 state.count() state.fields_match() state.no_duplicates() state.update_embeddings(record_set={'ids': [embedding_ids_1, embedding_ids_9], 'embeddings': [[0]*664, [0]*664], 'metadatas': [{'ei': -6.103515625e-05, '_': 'qscyRBC_', 'TP': 'IXd', 'N0FG7Nta1': -745247.375, 'woD': 66, 'IV': '0L3xImGg', '9N--JBl0uH_au_': -0.5, 'KVmhtcA': -9.999999747378752e-06, 'qr': False, 'NfL6': -0.9999899864196777, 'taIVpC': True, 'XJX': 'l', '5': 66, '8YaEynJznB': True, 'k': -177, 'N': 671709.375, 'ebB': 53239, 'fJ': 65709.09375, 'QK8l3l4yP-': False, '2': 'cRl59jW_O', '-XP899RRn': -999999.0, 'A9': 1.1754943508222875e-38, 'UlxNwmc': True, 'G': 128, '1NoCd': False, 'WRn5cD': -175840.15625}, {'zAbCKkEvE4s': True, 'hnFN': 'HExeVM0iM', 'Uc9': False, 'v': 1_759_514_963, 'X': False, 'W': 1.100000023841858}], 'documents': None}) state.ann_accuracy() # recall: 1.0, missing 0 out of 22, accuracy threshold 1e-06 state.count() state.fields_match() state.no_duplicates() state.update_embeddings(record_set={'ids': [embedding_ids_2], 'embeddings': [[0]*664], 'metadatas': None, 'documents': None}) state.ann_accuracy() # recall: 1.0, missing 0 out of 22, accuracy threshold 1e-06 state.count() state.fields_match() state.no_duplicates() state.update_embeddings(record_set={'ids': [embedding_ids_10, embedding_ids_2, embedding_ids_4, embedding_ids_12, embedding_ids_3], 'embeddings': [[0]*664, [0]*664, [0]*664, [0]*664, [0]*664], 'metadatas': [{'Y': '-iRt8'}, {'55m28': '8MxYq', 'krQsTFdqMhYjhF': False}, None, {'9SnviLf': -6.103515625e-05, 'Y0Jw4pLTwr': -184, 'v3E': 6.103515625e-05, 'Fx3jsbcdqy': 'VG7E7xm', 'H': 9071, '-U': '1xXUHLklmIVSVgQd7EHUCu5wa', 'S': 'kl6'}, {'U': -12, 'Qfm_6duL': False, 'Sh0LkduZt5qsRJrF': 'sB', '8DM': -64114, 'MZ': 'xtLNrNyRo2', 'lY': -922831.5, '7': False}], 'documents': None}) state.ann_accuracy() # recall: 1.0, missing 0 out of 22, accuracy threshold 1e-06 state.count() state.fields_match() state.no_duplicates() state.upsert_embeddings(record_set={'ids': [embedding_ids_0, embedding_ids_7, 'Oia', 'iD', embedding_ids_5], 'embeddings': [[0]*664, [0]*664, [0]*664, [0]*664, [0]*664], 'metadatas': [None, {'tVs': True, 'B': '4eK', 'zTR': True, 'bq6VslBBo2_12hgyKNPddxify34-np-': -22311, 'F7FcZpODwCTHg91o4mKTjBL': False, '1Zjfys': -13897, 'lg3': -866314519}, {'1qr': '_TG-YhAQ', 'TKV': 'Q', '8tLu': 1000000.0, 'QHsxa': 1.100000023841858, 'F': True}, {'p': True, 'rR': 'UepiV6K_', 'UDZ_uR': -1.5, 'fFG6cZvICaGc': True, 'unTbxz0qd2-AV1': -332950.25}, {'EXXVBZU': 2_147_483_647, 'tJMO': 'C9OePg', '4o': False, 'F8g8n': -999999.0, '5': 'aBY', 'hv3i': -48091}], 'documents': None}) state.ann_accuracy() # recall: 1.0, missing 0 out of 24, accuracy threshold 1e-06 state.count() state.fields_match() state.no_duplicates() state.teardown() def test_update_none(caplog: pytest.LogCaptureFixture, client: ClientAPI) -> None: state = EmbeddingStateMachine(client) state.initialize( collection=strategies.Collection( name="A00", metadata={ "hnsw:construction_ef": 128, "hnsw:search_ef": 128, "hnsw:M": 128, }, embedding_function=None, id=uuid.UUID("2fb0c945-b877-42ab-9417-bfe0f6b172af"), dimension=2, dtype=np.float16, known_metadata_keys={}, known_document_keywords=[], has_documents=False, has_embeddings=True, ) ) state.ann_accuracy() state.count() state.fields_match() state.no_duplicates() v1, v2, v3, v4, v5 = state.add_embeddings( # type: ignore[misc] record_set={ "ids": ["0", "1", "2", "3", "4"], "embeddings": [ [0.09765625, 0.430419921875], [0.20556640625, 0.08978271484375], [-0.1527099609375, 0.291748046875], [-0.12481689453125, 0.78369140625], [0.92724609375, -0.233154296875], ], "metadatas": [None, None, None, None, None], "documents": None, } ) state.ann_accuracy() state.count() state.fields_match() state.no_duplicates() state.update_embeddings( record_set={ "ids": [v5], "embeddings": [[0.58349609375, 0.05780029296875]], "metadatas": [{v1: v1}], "documents": None, } ) state.ann_accuracy() state.teardown() def test_add_delete_add(client: ClientAPI) -> None: state = EmbeddingStateMachine(client) state.initialize( collection=strategies.Collection( name="KR3cf", metadata={ "Ufmxsi3": 999999.0, "bMMvvrqM4MKmp5CJB8A": 62921, "-": True, "37PNi": "Vkn", "5KZfkpod3ND5soL_": True, "KA4zcZL9lRN9": 142, "Oc8G7ysXmE8lp4Hos_": "POQe8Unz1uJ", "BI930U": 31, "te": False, "tyM": -0.5, "R0ZiZ": True, "m": True, "IOw": -25725, "hnsw:construction_ef": 128, "hnsw:search_ef": 128, "hnsw:M": 128, }, embedding_function=None, id=uuid.UUID("284b6e99-b19e-49b2-96a4-a2a93a95447d"), dimension=3, dtype=np.float32, known_metadata_keys={}, known_document_keywords=[], has_documents=False, has_embeddings=True, ) ) state.ann_accuracy() state.count() state.fields_match() state.no_duplicates() embeddings = state.add_embeddings( record_set={ "ids": ["255", "l", "3-", "i", "Nk", "9yPvT"], "embeddings": [ [1.2, 2.3, 1.5], [4.5, 6.0, 2], [1, 2, 3], [4, 5, 6], [8.9, 9.0, 7], [4.5, 6.0, 5.6], ], "metadatas": None, "documents": None, } ) i = 0 emb_list = {} for embedding in embeddings: emb_list[i] = embedding i += 1 state.ann_accuracy() state.count() state.fields_match() state.no_duplicates() state.upsert_embeddings( record_set={ "ids": [ emb_list[0], emb_list[4], "KWcDaHUVD6MxEiJ", emb_list[5], "PdlP1d6w", ], "embeddings": [[1, 23, 4], [3, 5, 9], [9, 3, 5], [3, 9, 8], [1, 5, 4]], "documents": None, "metadatas": None, } ) state.ann_accuracy() state.count() state.fields_match() state.no_duplicates() if not NOT_CLUSTER_ONLY: state.wait_for_compaction() state.ann_accuracy() state.count() state.fields_match() state.no_duplicates() state.upsert_embeddings( record_set={ "ids": ["TpjiboLSuYWBJDbRW1zeNmC", emb_list[0], emb_list[4]], "embeddings": [[4, 6, 7], [7, 9, 3], [1, 3, 6]], "metadatas": None, "documents": None, } ) state.ann_accuracy() state.count() state.fields_match() state.no_duplicates() state.delete_by_ids( ids=[emb_list[2], emb_list[1], emb_list[5], emb_list[4], emb_list[3]] ) state.ann_accuracy() state.count() state.fields_match() state.no_duplicates() embeddings = state.add_embeddings( record_set={ "ids": ["o", "D3V84", "Rt", "TDwlc9C8_evn", emb_list[1]], "embeddings": [ [9, 5.4, 3.22], [1.33, 3.44, 5.66], [9.90, 9.8, 1.3], [9.7, 5.6, 4.5], [3.4, 5.6, 9.65], ], "documents": None, "metadatas": None, } ) i = 6 for embedding in embeddings: emb_list[i] = embedding i += 1 state.ann_accuracy() state.count() state.fields_match() if not NOT_CLUSTER_ONLY: state.wait_for_compaction() def test_multi_add(client: ClientAPI) -> None: reset(client) coll = client.create_collection(name="foo") coll.add(ids=["a"], embeddings=[[0.0]]) # type: ignore[arg-type] assert coll.count() == 1 # after the sqlite refactor - add silently ignores duplicates, no exception is raised # partial adds are supported - i.e we will add whatever we can in the request coll.add(ids=["a"], embeddings=[[0.0]]) # type: ignore[arg-type] assert coll.count() == 1 results = coll.get() assert results["ids"] == ["a"] coll.delete(ids=["a"]) assert coll.count() == 0 def test_dup_add(client: ClientAPI) -> None: reset(client) coll = client.create_collection(name="foo") with pytest.raises(errors.DuplicateIDError): coll.add(ids=["a", "a"], embeddings=[[0.0], [1.1]]) # type: ignore[arg-type] with pytest.raises(errors.DuplicateIDError): coll.upsert(ids=["a", "a"], embeddings=[[0.0], [1.1]]) # type: ignore[arg-type] def test_query_without_add(client: ClientAPI) -> None: reset(client) coll = client.create_collection(name="foo") fields: Include = ["documents", "metadatas", "embeddings", "distances"] # type: ignore[list-item] N = np.random.randint(1, 2000) K = np.random.randint(1, 100) results = coll.query( query_embeddings=np.random.random((N, K)).tolist(), include=fields ) for field in fields: field_results = results[field] # type: ignore[literal-required] assert field_results is not None assert all([len(result) == 0 for result in field_results]) def test_get_non_existent(client: ClientAPI) -> None: reset(client) coll = client.create_collection(name="foo") result = coll.get(ids=["a"], include=["documents", "metadatas", "embeddings"]) # type: ignore[list-item] assert len(result["ids"]) == 0 assert len(result["metadatas"]) == 0 # type: ignore[arg-type] assert len(result["documents"]) == 0 # type: ignore[arg-type] assert len(result["embeddings"]) == 0 # type: ignore[arg-type] # TODO: Use SQL escaping correctly internally @pytest.mark.xfail(reason="We don't properly escape SQL internally, causing problems") def test_escape_chars_in_ids(client: ClientAPI) -> None: reset(client) id = "\x1f" coll = client.create_collection(name="foo") coll.add(ids=[id], embeddings=[[0.0]]) # type: ignore[arg-type] assert coll.count() == 1 coll.delete(ids=[id]) assert coll.count() == 0 def test_delete_empty_fails(client: ClientAPI) -> None: reset(client) coll = client.create_collection(name="foo") with pytest.raises(ValueError): coll.delete() @pytest.mark.parametrize( "kwargs", [ {"ids": ["foo"]}, {"where": {"foo": "bar"}}, {"where_document": {"$contains": "bar"}}, {"ids": ["foo"], "where": {"foo": "bar"}}, {"ids": ["foo"], "where_document": {"$contains": "bar"}}, { "ids": ["foo"], "where": {"foo": "bar"}, "where_document": {"$contains": "bar"}, }, ], ) def test_delete_success(client: ClientAPI, kwargs: Any) -> None: reset(client) coll = client.create_collection(name="foo") # Should not raise coll.delete(**kwargs) @given(supported_types=st.sampled_from([np.float32, np.int32, np.int64, int, float])) def test_autocasting_validate_embeddings_for_compatible_types( supported_types: List[Any], ) -> None: embds = strategies.create_embeddings(10, 10, supported_types) validated_embeddings = validate_embeddings( cast( Embeddings, normalize_embeddings(embds), ) ) assert all( [ isinstance(value, np.ndarray) and ( value.dtype == np.float32 or value.dtype == np.float64 or value.dtype == np.int32 or value.dtype == np.int64 ) for value in validated_embeddings ] ) @given(supported_types=st.sampled_from([np.float32, np.int32, np.int64, int, float])) def test_autocasting_validate_embeddings_with_ndarray( supported_types: List[Any], ) -> None: embds = strategies.create_embeddings_ndarray(10, 10, supported_types) validated_embeddings = validate_embeddings( cast(Embeddings, normalize_embeddings(embds)) ) assert all( [ isinstance(value, np.ndarray) and ( value.dtype == np.float32 or value.dtype == np.float64 or value.dtype == np.int32 or value.dtype == np.int64 ) for value in validated_embeddings ] ) @given(unsupported_types=st.sampled_from([str, bool])) def test_autocasting_validate_embeddings_incompatible_types( unsupported_types: List[Any], ) -> None: embds = strategies.create_embeddings(10, 10, unsupported_types) with pytest.raises(ValueError) as e: validate_embeddings(cast(Embeddings, normalize_embeddings(embds))) assert ( "Expected embeddings to be a list of floats or ints, a list of lists, a numpy array, or a list of numpy arrays, got " in str(e.value) ) def test_0dim_embedding_validation() -> None: embds: Embeddings = [np.array([])] with pytest.raises(ValueError) as e: validate_embeddings(embds) assert ( "Expected each embedding in the embeddings to be a 1-dimensional numpy array with at least 1 int/float value. Got a 1-dimensional numpy array with no values at pos" in str(e) ) def test_no_op_compaction(client: ClientAPI) -> None: reset(client) coll = client.create_collection(name="noop") for batch in range(0, 5000, 100): coll.delete(ids=[str(i) for i in range(batch, batch + 100)]) if not NOT_CLUSTER_ONLY: wait_for_version_increase(client, coll.name, get_collection_version(client, coll.name), 240) def test_add_then_purge(client: ClientAPI) -> None: reset(client) record_count = 5000 batch_count = 100 coll = client.create_collection(name="add_then_purge") # Add records and wait for compaction for batch in range(0, record_count, batch_count): record_id_vals = [i for i in range(batch, batch + batch_count)] record_ids = [str(i) for i in record_id_vals] coll.add(ids=record_ids, embeddings=[[2 * i, 2 * i + 1] for i in record_id_vals]) if not NOT_CLUSTER_ONLY: wait_for_version_increase(client, coll.name, get_collection_version(client, coll.name), 240) # Purge records and wait for compaction for batch in range(0, record_count, batch_count): record_id_vals = [i for i in range(batch, batch + batch_count)] record_ids = [str(i) for i in record_id_vals] coll.delete(ids=record_ids) if not NOT_CLUSTER_ONLY: wait_for_version_increase(client, coll.name, get_collection_version(client, coll.name), 240) # There should be no records left assert len(coll.get()["ids"]) == 0
Memory