import inspect from typing import TYPE_CHECKING, Optional, Union from chromadb.api.models.CollectionCommon import CollectionCommon from chromadb.api.types import ( URI, CollectionMetadata, Embedding, IncludeEnum, PyEmbedding, Include, Metadata, Document, Image, Where, IDs, GetResult, QueryResult, ID, OneOrMany, WhereDocument, IncludeEnum, ) import logging logger = logging.getLogger(__name__) if TYPE_CHECKING: from chromadb.api import ServerAPI # noqa: F401 class Collection(CollectionCommon["ServerAPI"]): def count(self) -> int: """The total number of embeddings added to the database Returns: int: The total number of embeddings added to the database """ return self._client._count( collection_id=self.id, tenant=self.tenant, database=self.database, ) def add( self, ids: OneOrMany[ID], embeddings: Optional[ Union[ OneOrMany[Embedding], OneOrMany[PyEmbedding], ] ] = None, metadatas: Optional[OneOrMany[Metadata]] = None, documents: Optional[OneOrMany[Document]] = None, images: Optional[OneOrMany[Image]] = None, uris: Optional[OneOrMany[URI]] = None, ) -> None: """Add embeddings to the data store. Args: ids: The ids of the embeddings you wish to add embeddings: The embeddings to add. If None, embeddings will be computed based on the documents or images using the embedding_function set for the Collection. Optional. metadatas: The metadata to associate with the embeddings. When querying, you can filter on this metadata. Optional. documents: The documents to associate with the embeddings. Optional. images: The images to associate with the embeddings. Optional. uris: The uris of the images to associate with the embeddings. Optional. Returns: None Raises: ValueError: If you don't provide either embeddings or documents ValueError: If the length of ids, embeddings, metadatas, or documents don't match ValueError: If you don't provide an embedding function and don't provide embeddings ValueError: If you provide both embeddings and documents ValueError: If you provide an id that already exists """ add_request = self._validate_and_prepare_add_request( ids=ids, embeddings=embeddings, metadatas=metadatas, documents=documents, images=images, uris=uris, ) self._client._add( collection_id=self.id, ids=add_request["ids"], embeddings=add_request["embeddings"], metadatas=add_request["metadatas"], documents=add_request["documents"], uris=add_request["uris"], tenant=self.tenant, database=self.database, ) def get( self, ids: Optional[OneOrMany[ID]] = None, where: Optional[Where] = None, limit: Optional[int] = None, offset: Optional[int] = None, where_document: Optional[WhereDocument] = None, include: Include = [IncludeEnum.metadatas, IncludeEnum.documents], ) -> GetResult: """Get embeddings and their associate data from the data store. If no ids or where filter is provided returns all embeddings up to limit starting at offset. Args: ids: The ids of the embeddings to get. Optional. where: A Where type dict used to filter results by. E.g. `{"$and": [{"color" : "red"}, {"price": {"$gte": 4.20}}]}`. Optional. limit: The number of documents to return. Optional. offset: The offset to start returning results from. Useful for paging results with limit. Optional. where_document: A WhereDocument type dict used to filter by the documents. E.g. `{$contains: {"text": "hello"}}`. Optional. include: A list of what to include in the results. Can contain `"embeddings"`, `"metadatas"`, `"documents"`. Ids are always included. Defaults to `["metadatas", "documents"]`. Optional. Returns: GetResult: A GetResult object containing the results. """ get_request = self._validate_and_prepare_get_request( ids=ids, where=where, where_document=where_document, include=include, ) get_results = self._client._get( collection_id=self.id, ids=get_request["ids"], where=get_request["where"], where_document=get_request["where_document"], include=get_request["include"], sort=None, limit=limit, offset=offset, tenant=self.tenant, database=self.database, ) return self._transform_get_response( response=get_results, include=get_request["include"] ) def peek(self, limit: int = 10) -> GetResult: """Get the first few results in the database up to limit Args: limit: The number of results to return. Returns: GetResult: A GetResult object containing the results. """ return self._transform_peek_response( self._client._peek( collection_id=self.id, n=limit, tenant=self.tenant, database=self.database, ) ) def query( self, query_embeddings: Optional[ Union[ OneOrMany[Embedding], OneOrMany[PyEmbedding], ] ] = None, query_texts: Optional[OneOrMany[Document]] = None, query_images: Optional[OneOrMany[Image]] = None, query_uris: Optional[OneOrMany[URI]] = None, n_results: int = 10, where: Optional[Where] = None, where_document: Optional[WhereDocument] = None, include: Include = [ IncludeEnum.metadatas, IncludeEnum.documents, IncludeEnum.distances, ], ) -> QueryResult: """Get the n_results nearest neighbor embeddings for provided query_embeddings or query_texts. Args: query_embeddings: The embeddings to get the closes neighbors of. Optional. query_texts: The document texts to get the closes neighbors of. Optional. query_images: The images to get the closes neighbors of. Optional. query_uris: The URIs to be used with data loader. Optional. n_results: The number of neighbors to return for each query_embedding or query_texts. Optional. where: A Where type dict used to filter results by. E.g. `{"$and": [{"color" : "red"}, {"price": {"$gte": 4.20}}]}`. Optional. where_document: A WhereDocument type dict used to filter by the documents. E.g. `{$contains: {"text": "hello"}}`. Optional. include: A list of what to include in the results. Can contain `"embeddings"`, `"metadatas"`, `"documents"`, `"distances"`. Ids are always included. Defaults to `["metadatas", "documents", "distances"]`. Optional. Returns: QueryResult: A QueryResult object containing the results. Raises: ValueError: If you don't provide either query_embeddings, query_texts, or query_images ValueError: If you provide both query_embeddings and query_texts ValueError: If you provide both query_embeddings and query_images ValueError: If you provide both query_texts and query_images """ query_request = self._validate_and_prepare_query_request( query_embeddings=query_embeddings, query_texts=query_texts, query_images=query_images, query_uris=query_uris, n_results=n_results, where=where, where_document=where_document, include=include, ) query_results = self._client._query( collection_id=self.id, query_embeddings=query_request["embeddings"], n_results=query_request["n_results"], where=query_request["where"], where_document=query_request["where_document"], include=query_request["include"], tenant=self.tenant, database=self.database, ) return self._transform_query_response( response=query_results, include=query_request["include"] ) def modify( self, name: Optional[str] = None, metadata: Optional[CollectionMetadata] = None ) -> None: """Modify the collection name or metadata Args: name: The updated name for the collection. Optional. metadata: The updated metadata for the collection. Optional. Returns: None """ self._validate_modify_request(metadata) # Note there is a race condition here where the metadata can be updated # but another thread sees the cached local metadata. # TODO: fixme self._client._modify( id=self.id, new_name=name, new_metadata=metadata, tenant=self.tenant, database=self.database, ) self._update_model_after_modify_success(name, metadata) def update( self, ids: OneOrMany[ID], embeddings: Optional[ Union[ OneOrMany[Embedding], OneOrMany[PyEmbedding], ] ] = None, metadatas: Optional[OneOrMany[Metadata]] = None, documents: Optional[OneOrMany[Document]] = None, images: Optional[OneOrMany[Image]] = None, uris: Optional[OneOrMany[URI]] = None, ) -> None: """Update the embeddings, metadatas or documents for provided ids. Args: ids: The ids of the embeddings to update embeddings: The embeddings to update. If None, embeddings will be computed based on the documents or images using the embedding_function set for the Collection. Optional. metadatas: The metadata to associate with the embeddings. When querying, you can filter on this metadata. Optional. documents: The documents to associate with the embeddings. Optional. images: The images to associate with the embeddings. Optional. Returns: None """ update_request = self._validate_and_prepare_update_request( ids=ids, embeddings=embeddings, metadatas=metadatas, documents=documents, images=images, uris=uris, ) self._client._update( collection_id=self.id, ids=update_request["ids"], embeddings=update_request["embeddings"], metadatas=update_request["metadatas"], documents=update_request["documents"], uris=update_request["uris"], tenant=self.tenant, database=self.database, ) def upsert( self, ids: OneOrMany[ID], embeddings: Optional[ Union[ OneOrMany[Embedding], OneOrMany[PyEmbedding], ] ] = None, metadatas: Optional[OneOrMany[Metadata]] = None, documents: Optional[OneOrMany[Document]] = None, images: Optional[OneOrMany[Image]] = None, uris: Optional[OneOrMany[URI]] = None, ) -> None: """Update the embeddings, metadatas or documents for provided ids, or create them if they don't exist. Args: ids: The ids of the embeddings to update embeddings: The embeddings to add. If None, embeddings will be computed based on the documents using the embedding_function set for the Collection. Optional. metadatas: The metadata to associate with the embeddings. When querying, you can filter on this metadata. Optional. documents: The documents to associate with the embeddings. Optional. Returns: None """ upsert_request = self._validate_and_prepare_upsert_request( ids=ids, embeddings=embeddings, metadatas=metadatas, documents=documents, images=images, uris=uris, ) self._client._upsert( collection_id=self.id, ids=upsert_request["ids"], embeddings=upsert_request["embeddings"], metadatas=upsert_request["metadatas"], documents=upsert_request["documents"], uris=upsert_request["uris"], tenant=self.tenant, database=self.database, ) def delete( self, ids: Optional[IDs] = None, where: Optional[Where] = None, where_document: Optional[WhereDocument] = None, ) -> None: """Delete the embeddings based on ids and/or a where filter Args: ids: The ids of the embeddings to delete where: A Where type dict used to filter the delection by. E.g. `{"$and": [{"color" : "red"}, {"price": {"$gte": 4.20}]}}`. Optional. where_document: A WhereDocument type dict used to filter the deletion by the document content. E.g. `{$contains: {"text": "hello"}}`. Optional. Returns: None Raises: ValueError: If you don't provide either ids, where, or where_document """ delete_request = self._validate_and_prepare_delete_request( ids, where, where_document ) self._client._delete( collection_id=self.id, ids=delete_request["ids"], where=delete_request["where"], where_document=delete_request["where_document"], tenant=self.tenant, database=self.database, ) class CollectionName(str): """ A string wrapper to supply users with indicative message about list_collections only returning collection names, in lieu of Collection object. When a user will try to access an attribute on a CollectionName string, the __getattribute__ method of str is invoked first. If a valid str method or property is found, it will be used. Otherwise, the fallback __getattr__ defined here is invoked next. It will error if the requested attribute is a Collection method or property. For example: collection_name = client.list_collections()[0] # collection_name = "test" collection_name.startsWith("t") # Evaluates to True. # __getattribute__ is invoked first, selecting startsWith from str. collection_name.add(ids=[...], documents=[...]) # Raises the error defined below # __getattribute__ is invoked first, not finding a match in str. # __getattr__ from this class is invoked and raises an error """ def __getattr__(self, item): collection_attributes_and_methods = [ member for member, _ in inspect.getmembers(Collection) if not member.startswith("_") ] if item in collection_attributes_and_methods: raise NotImplementedError( f"In Chroma v0.6.0, list_collections only returns collection names. " f"Use Client.get_collection({str(self)}) to access {item}. " f"See https://docs.trychroma.com/deployment/migration for more information." ) raise AttributeError(f"'CollectionName' object has no attribute '{item}'")
Memory