Metadata-Version: 2.2 Name: PyPika Version: 0.48.9 Summary: A SQL query builder API for Python Home-page: https://github.com/kayak/pypika Author: Timothy Heys Author-email: theys@kayak.com License: Apache License Version 2.0 Keywords: pypika python query builder querybuilder sql mysql postgres psql oracle vertica aggregated relational database rdbms business analytics bi data science analysis pandas orm object mapper Classifier: License :: OSI Approved :: Apache Software License Classifier: Development Status :: 5 - Production/Stable Classifier: Intended Audience :: Developers Classifier: Programming Language :: Python :: 3 Classifier: Programming Language :: PL/SQL Classifier: Topic :: Software Development :: Libraries :: Python Modules Classifier: Topic :: Scientific/Engineering :: Information Analysis Classifier: Topic :: Scientific/Engineering :: Mathematics Classifier: Operating System :: POSIX Classifier: Operating System :: MacOS :: MacOS X Classifier: Operating System :: Microsoft :: Windows License-File: LICENSE.txt Dynamic: author Dynamic: author-email Dynamic: classifier Dynamic: description Dynamic: home-page Dynamic: keywords Dynamic: license Dynamic: summary PyPika - Python Query Builder ============================= .. _intro_start: |BuildStatus| |CoverageStatus| |Codacy| |Docs| |PyPi| |License| Abstract -------- What is |Brand|? |Brand| is a Python API for building SQL queries. The motivation behind |Brand| is to provide a simple interface for building SQL queries without limiting the flexibility of handwritten SQL. Designed with data analysis in mind, |Brand| leverages the builder design pattern to construct queries to avoid messy string formatting and concatenation. It is also easily extended to take full advantage of specific features of SQL database vendors. What are the design goals for |Brand|? ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |Brand| is a fast, expressive and flexible way to replace handwritten SQL (or even ORM for the courageous souls amongst you). Validation of SQL correctness is not an explicit goal of |Brand|. With such a large number of SQL database vendors providing a robust validation of input data is difficult. Instead you are encouraged to check inputs you provide to |Brand| or appropriately handle errors raised from your SQL database - just as you would have if you were writing SQL yourself. .. _intro_end: Read the docs: http://pypika.readthedocs.io/en/latest/ Installation ------------ .. _installation_start: |Brand| supports python ``3.6+``. It may also work on pypy, cython, and jython, but is not being tested for these versions. To install |Brand| run the following command: .. code-block:: bash pip install pypika .. _installation_end: Tutorial -------- .. _tutorial_start: The main classes in pypika are ``pypika.Query``, ``pypika.Table``, and ``pypika.Field``. .. code-block:: python from pypika import Query, Table, Field Selecting Data ^^^^^^^^^^^^^^ The entry point for building queries is ``pypika.Query``. In order to select columns from a table, the table must first be added to the query. For simple queries with only one table, tables and columns can be references using strings. For more sophisticated queries a ``pypika.Table`` must be used. .. code-block:: python q = Query.from_('customers').select('id', 'fname', 'lname', 'phone') To convert the query into raw SQL, it can be cast to a string. .. code-block:: python str(q) Alternatively, you can use the `Query.get_sql()` function: .. code-block:: python q.get_sql() Tables, Columns, Schemas, and Databases ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ In simple queries like the above example, columns in the "from" table can be referenced by passing string names into the ``select`` query builder function. In more complex examples, the ``pypika.Table`` class should be used. Columns can be referenced as attributes on instances of ``pypika.Table``. .. code-block:: python from pypika import Table, Query customers = Table('customers') q = Query.from_(customers).select(customers.id, customers.fname, customers.lname, customers.phone) Both of the above examples result in the following SQL: .. code-block:: sql SELECT id,fname,lname,phone FROM customers An alias for the table can be given using the ``.as_`` function on ``pypika.Table`` .. code-block:: sql customers = Table('x_view_customers').as_('customers') q = Query.from_(customers).select(customers.id, customers.phone) .. code-block:: sql SELECT id,phone FROM x_view_customers customers A schema can also be specified. Tables can be referenced as attributes on the schema. .. code-block:: sql from pypika import Table, Query, Schema views = Schema('views') q = Query.from_(views.customers).select(customers.id, customers.phone) .. code-block:: sql SELECT id,phone FROM views.customers Also references to databases can be used. Schemas can be referenced as attributes on the database. .. code-block:: sql from pypika import Table, Query, Database my_db = Database('my_db') q = Query.from_(my_db.analytics.customers).select(customers.id, customers.phone) .. code-block:: sql SELECT id,phone FROM my_db.analytics.customers Results can be ordered by using the following syntax: .. code-block:: python from pypika import Order Query.from_('customers').select('id', 'fname', 'lname', 'phone').orderby('id', order=Order.desc) This results in the following SQL: .. code-block:: sql SELECT "id","fname","lname","phone" FROM "customers" ORDER BY "id" DESC Arithmetic """""""""" Arithmetic expressions can also be constructed using pypika. Operators such as `+`, `-`, `*`, and `/` are implemented by ``pypika.Field`` which can be used simply with a ``pypika.Table`` or directly. .. code-block:: python from pypika import Field q = Query.from_('account').select( Field('revenue') - Field('cost') ) .. code-block:: sql SELECT revenue-cost FROM accounts Using ``pypika.Table`` .. code-block:: python accounts = Table('accounts') q = Query.from_(accounts).select( accounts.revenue - accounts.cost ) .. code-block:: sql SELECT revenue-cost FROM accounts An alias can also be used for fields and expressions. .. code-block:: sql q = Query.from_(accounts).select( (accounts.revenue - accounts.cost).as_('profit') ) .. code-block:: sql SELECT revenue-cost profit FROM accounts More arithmetic examples .. code-block:: python table = Table('table') q = Query.from_(table).select( table.foo + table.bar, table.foo - table.bar, table.foo * table.bar, table.foo / table.bar, (table.foo+table.bar) / table.fiz, ) .. code-block:: sql SELECT foo+bar,foo-bar,foo*bar,foo/bar,(foo+bar)/fiz FROM table Filtering """"""""" Queries can be filtered with ``pypika.Criterion`` by using equality or inequality operators .. code-block:: python customers = Table('customers') q = Query.from_(customers).select( customers.id, customers.fname, customers.lname, customers.phone ).where( customers.lname == 'Mustermann' ) .. code-block:: sql SELECT id,fname,lname,phone FROM customers WHERE lname='Mustermann' Query methods such as select, where, groupby, and orderby can be called multiple times. Multiple calls to the where method will add additional conditions as .. code-block:: python customers = Table('customers') q = Query.from_(customers).select( customers.id, customers.fname, customers.lname, customers.phone ).where( customers.fname == 'Max' ).where( customers.lname == 'Mustermann' ) .. code-block:: sql SELECT id,fname,lname,phone FROM customers WHERE fname='Max' AND lname='Mustermann' Filters such as IN and BETWEEN are also supported .. code-block:: python customers = Table('customers') q = Query.from_(customers).select( customers.id,customers.fname ).where( customers.age[18:65] & customers.status.isin(['new', 'active']) ) .. code-block:: sql SELECT id,fname FROM customers WHERE age BETWEEN 18 AND 65 AND status IN ('new','active') Filtering with complex criteria can be created using boolean symbols ``&``, ``|``, and ``^``. AND .. code-block:: python customers = Table('customers') q = Query.from_(customers).select( customers.id, customers.fname, customers.lname, customers.phone ).where( (customers.age >= 18) & (customers.lname == 'Mustermann') ) .. code-block:: sql SELECT id,fname,lname,phone FROM customers WHERE age>=18 AND lname='Mustermann' OR .. code-block:: python customers = Table('customers') q = Query.from_(customers).select( customers.id, customers.fname, customers.lname, customers.phone ).where( (customers.age >= 18) | (customers.lname == 'Mustermann') ) .. code-block:: sql SELECT id,fname,lname,phone FROM customers WHERE age>=18 OR lname='Mustermann' XOR .. code-block:: python customers = Table('customers') q = Query.from_(customers).select( customers.id, customers.fname, customers.lname, customers.phone ).where( (customers.age >= 18) ^ customers.is_registered ) .. code-block:: sql SELECT id,fname,lname,phone FROM customers WHERE age>=18 XOR is_registered Convenience Methods """"""""""""""""""" In the `Criterion` class, there are the static methods `any` and `all` that allow building chains AND and OR expressions with a list of terms. .. code-block:: python from pypika import Criterion customers = Table('customers') q = Query.from_(customers).select( customers.id, customers.fname ).where( Criterion.all([ customers.is_registered, customers.age >= 18, customers.lname == "Jones", ]) ) .. code-block:: sql SELECT id,fname FROM customers WHERE is_registered AND age>=18 AND lname = "Jones" Grouping and Aggregating """""""""""""""""""""""" Grouping allows for aggregated results and works similar to ``SELECT`` clauses. .. code-block:: python from pypika import functions as fn customers = Table('customers') q = Query \ .from_(customers) \ .where(customers.age >= 18) \ .groupby(customers.id) \ .select(customers.id, fn.Sum(customers.revenue)) .. code-block:: sql SELECT id,SUM("revenue") FROM "customers" WHERE "age">=18 GROUP BY "id" After adding a ``GROUP BY`` clause to a query, the ``HAVING`` clause becomes available. The method ``Query.having()`` takes a ``Criterion`` parameter similar to the method ``Query.where()``. .. code-block:: python from pypika import functions as fn payments = Table('payments') q = Query \ .from_(payments) \ .where(payments.transacted[date(2015, 1, 1):date(2016, 1, 1)]) \ .groupby(payments.customer_id) \ .having(fn.Sum(payments.total) >= 1000) \ .select(payments.customer_id, fn.Sum(payments.total)) .. code-block:: sql SELECT customer_id,SUM(total) FROM payments WHERE transacted BETWEEN '2015-01-01' AND '2016-01-01' GROUP BY customer_id HAVING SUM(total)>=1000 Joining Tables and Subqueries """"""""""""""""""""""""""""" Tables and subqueries can be joined to any query using the ``Query.join()`` method. Joins can be performed with either a ``USING`` or ``ON`` clauses. The ``USING`` clause can be used when both tables/subqueries contain the same field and the ``ON`` clause can be used with a criterion. To perform a join, ``...join()`` can be chained but then must be followed immediately by ``...on(<criterion>)`` or ``...using(*field)``. Join Types ~~~~~~~~~~ All join types are supported by |Brand|. .. code-block:: python Query \ .from_(base_table) ... .join(join_table, JoinType.left) ... .. code-block:: python Query \ .from_(base_table) ... .left_join(join_table) \ .left_outer_join(join_table) \ .right_join(join_table) \ .right_outer_join(join_table) \ .inner_join(join_table) \ .outer_join(join_table) \ .full_outer_join(join_table) \ .cross_join(join_table) \ .hash_join(join_table) \ ... See the list of join types here ``pypika.enums.JoinTypes`` Example of a join using `ON` ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. code-block:: python history, customers = Tables('history', 'customers') q = Query \ .from_(history) \ .join(customers) \ .on(history.customer_id == customers.id) \ .select(history.star) \ .where(customers.id == 5) .. code-block:: sql SELECT "history".* FROM "history" JOIN "customers" ON "history"."customer_id"="customers"."id" WHERE "customers"."id"=5 As a shortcut, the ``Query.join().on_field()`` function is provided for joining the (first) table in the ``FROM`` clause with the joined table when the field name(s) are the same in both tables. Example of a join using `ON` ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. code-block:: python history, customers = Tables('history', 'customers') q = Query \ .from_(history) \ .join(customers) \ .on_field('customer_id', 'group') \ .select(history.star) \ .where(customers.group == 'A') .. code-block:: sql SELECT "history".* FROM "history" JOIN "customers" ON "history"."customer_id"="customers"."customer_id" AND "history"."group"="customers"."group" WHERE "customers"."group"='A' Example of a join using `USING` ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. code-block:: python history, customers = Tables('history', 'customers') q = Query \ .from_(history) \ .join(customers) \ .using('customer_id') \ .select(history.star) \ .where(customers.id == 5) .. code-block:: sql SELECT "history".* FROM "history" JOIN "customers" USING "customer_id" WHERE "customers"."id"=5 Example of a correlated subquery in the `SELECT` ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. code-block:: python history, customers = Tables('history', 'customers') last_purchase_at = Query.from_(history).select( history.purchase_at ).where(history.customer_id==customers.customer_id).orderby( history.purchase_at, order=Order.desc ).limit(1) q = Query.from_(customers).select( customers.id, last_purchase_at.as_('last_purchase_at') ) .. code-block:: sql SELECT "id", (SELECT "history"."purchase_at" FROM "history" WHERE "history"."customer_id" = "customers"."customer_id" ORDER BY "history"."purchase_at" DESC LIMIT 1) "last_purchase_at" FROM "customers" Unions """""" Both ``UNION`` and ``UNION ALL`` are supported. ``UNION DISTINCT`` is synonomous with "UNION`` so |Brand| does not provide a separate function for it. Unions require that queries have the same number of ``SELECT`` clauses so trying to cast a unioned query to string will throw a ``SetOperationException`` if the column sizes are mismatched. To create a union query, use either the ``Query.union()`` method or `+` operator with two query instances. For a union all, use ``Query.union_all()`` or the `*` operator. .. code-block:: python provider_a, provider_b = Tables('provider_a', 'provider_b') q = Query.from_(provider_a).select( provider_a.created_time, provider_a.foo, provider_a.bar ) + Query.from_(provider_b).select( provider_b.created_time, provider_b.fiz, provider_b.buz ) .. code-block:: sql SELECT "created_time","foo","bar" FROM "provider_a" UNION SELECT "created_time","fiz","buz" FROM "provider_b" Intersect """"""""" ``INTERSECT`` is supported. Intersects require that queries have the same number of ``SELECT`` clauses so trying to cast a intersected query to string will throw a ``SetOperationException`` if the column sizes are mismatched. To create a intersect query, use the ``Query.intersect()`` method. .. code-block:: python provider_a, provider_b = Tables('provider_a', 'provider_b') q = Query.from_(provider_a).select( provider_a.created_time, provider_a.foo, provider_a.bar ) r = Query.from_(provider_b).select( provider_b.created_time, provider_b.fiz, provider_b.buz ) intersected_query = q.intersect(r) .. code-block:: sql SELECT "created_time","foo","bar" FROM "provider_a" INTERSECT SELECT "created_time","fiz","buz" FROM "provider_b" Minus """"" ``MINUS`` is supported. Minus require that queries have the same number of ``SELECT`` clauses so trying to cast a minus query to string will throw a ``SetOperationException`` if the column sizes are mismatched. To create a minus query, use either the ``Query.minus()`` method or `-` operator with two query instances. .. code-block:: python provider_a, provider_b = Tables('provider_a', 'provider_b') q = Query.from_(provider_a).select( provider_a.created_time, provider_a.foo, provider_a.bar ) r = Query.from_(provider_b).select( provider_b.created_time, provider_b.fiz, provider_b.buz ) minus_query = q.minus(r) (or) minus_query = Query.from_(provider_a).select( provider_a.created_time, provider_a.foo, provider_a.bar ) - Query.from_(provider_b).select( provider_b.created_time, provider_b.fiz, provider_b.buz ) .. code-block:: sql SELECT "created_time","foo","bar" FROM "provider_a" MINUS SELECT "created_time","fiz","buz" FROM "provider_b" EXCEPT """""" ``EXCEPT`` is supported. Minus require that queries have the same number of ``SELECT`` clauses so trying to cast a except query to string will throw a ``SetOperationException`` if the column sizes are mismatched. To create a except query, use the ``Query.except_of()`` method. .. code-block:: python provider_a, provider_b = Tables('provider_a', 'provider_b') q = Query.from_(provider_a).select( provider_a.created_time, provider_a.foo, provider_a.bar ) r = Query.from_(provider_b).select( provider_b.created_time, provider_b.fiz, provider_b.buz ) minus_query = q.except_of(r) .. code-block:: sql SELECT "created_time","foo","bar" FROM "provider_a" EXCEPT SELECT "created_time","fiz","buz" FROM "provider_b" Date, Time, and Intervals """"""""""""""""""""""""" Using ``pypika.Interval``, queries can be constructed with date arithmetic. Any combination of intervals can be used except for weeks and quarters, which must be used separately and will ignore any other values if selected. .. code-block:: python from pypika import functions as fn fruits = Tables('fruits') q = Query.from_(fruits) \ .select(fruits.id, fruits.name) \ .where(fruits.harvest_date + Interval(months=1) < fn.Now()) .. code-block:: sql SELECT id,name FROM fruits WHERE harvest_date+INTERVAL 1 MONTH<NOW() Tuples """""" Tuples are supported through the class ``pypika.Tuple`` but also through the native python tuple wherever possible. Tuples can be used with ``pypika.Criterion`` in **WHERE** clauses for pairwise comparisons. .. code-block:: python from pypika import Query, Tuple q = Query.from_(self.table_abc) \ .select(self.table_abc.foo, self.table_abc.bar) \ .where(Tuple(self.table_abc.foo, self.table_abc.bar) == Tuple(1, 2)) .. code-block:: sql SELECT "foo","bar" FROM "abc" WHERE ("foo","bar")=(1,2) Using ``pypika.Tuple`` on both sides of the comparison is redundant and |Brand| supports native python tuples. .. code-block:: python from pypika import Query, Tuple q = Query.from_(self.table_abc) \ .select(self.table_abc.foo, self.table_abc.bar) \ .where(Tuple(self.table_abc.foo, self.table_abc.bar) == (1, 2)) .. code-block:: sql SELECT "foo","bar" FROM "abc" WHERE ("foo","bar")=(1,2) Tuples can be used in **IN** clauses. .. code-block:: python Query.from_(self.table_abc) \ .select(self.table_abc.foo, self.table_abc.bar) \ .where(Tuple(self.table_abc.foo, self.table_abc.bar).isin([(1, 1), (2, 2), (3, 3)])) .. code-block:: sql SELECT "foo","bar" FROM "abc" WHERE ("foo","bar") IN ((1,1),(2,2),(3,3)) Strings Functions """"""""""""""""" There are several string operations and function wrappers included in |Brand|. Function wrappers can be found in the ``pypika.functions`` package. In addition, `LIKE` and `REGEX` queries are supported as well. .. code-block:: python from pypika import functions as fn customers = Tables('customers') q = Query.from_(customers).select( customers.id, customers.fname, customers.lname, ).where( customers.lname.like('Mc%') ) .. code-block:: sql SELECT id,fname,lname FROM customers WHERE lname LIKE 'Mc%' .. code-block:: python from pypika import functions as fn customers = Tables('customers') q = Query.from_(customers).select( customers.id, customers.fname, customers.lname, ).where( customers.lname.regex(r'^[abc][a-zA-Z]+&') ) .. code-block:: sql SELECT id,fname,lname FROM customers WHERE lname REGEX '^[abc][a-zA-Z]+&'; .. code-block:: python from pypika import functions as fn customers = Tables('customers') q = Query.from_(customers).select( customers.id, fn.Concat(customers.fname, ' ', customers.lname).as_('full_name'), ) .. code-block:: sql SELECT id,CONCAT(fname, ' ', lname) full_name FROM customers Custom Functions """""""""""""""" Custom Functions allows us to use any function on queries, as some functions are not covered by PyPika as default, we can appeal to Custom functions. .. code-block:: python from pypika import CustomFunction customers = Tables('customers') DateDiff = CustomFunction('DATE_DIFF', ['interval', 'start_date', 'end_date']) q = Query.from_(customers).select( customers.id, customers.fname, customers.lname, DateDiff('day', customers.created_date, customers.updated_date) ) .. code-block:: sql SELECT id,fname,lname,DATE_DIFF('day',created_date,updated_date) FROM customers Case Statements """"""""""""""" Case statements allow fow a number of conditions to be checked sequentially and return a value for the first condition met or otherwise a default value. The Case object can be used to chain conditions together along with their output using the ``when`` method and to set the default value using ``else_``. .. code-block:: python from pypika import Case, functions as fn customers = Tables('customers') q = Query.from_(customers).select( customers.id, Case() .when(customers.fname == "Tom", "It was Tom") .when(customers.fname == "John", "It was John") .else_("It was someone else.").as_('who_was_it') ) .. code-block:: sql SELECT "id",CASE WHEN "fname"='Tom' THEN 'It was Tom' WHEN "fname"='John' THEN 'It was John' ELSE 'It was someone else.' END "who_was_it" FROM "customers" With Clause """"""""""""""" With clause allows give a sub-query block a name, which can be referenced in several places within the main SQL query. The SQL WITH clause is basically a drop-in replacement to the normal sub-query. .. code-block:: python from pypika import Table, AliasedQuery, Query customers = Table('customers') sub_query = (Query .from_(customers) .select('*')) test_query = (Query .with_(sub_query, "an_alias") .from_(AliasedQuery("an_alias")) .select('*')) You can use as much as `.with_()` as you want. .. code-block:: sql WITH an_alias AS (SELECT * FROM "customers") SELECT * FROM an_alias Inserting Data ^^^^^^^^^^^^^^ Data can be inserted into tables either by providing the values in the query or by selecting them through another query. By default, data can be inserted by providing values for all columns in the order that they are defined in the table. Insert with values """""""""""""""""" .. code-block:: python customers = Table('customers') q = Query.into(customers).insert(1, 'Jane', 'Doe', 'jane@example.com') .. code-block:: sql INSERT INTO customers VALUES (1,'Jane','Doe','jane@example.com') .. code-block:: python customers = Table('customers') q = customers.insert(1, 'Jane', 'Doe', 'jane@example.com') .. code-block:: sql INSERT INTO customers VALUES (1,'Jane','Doe','jane@example.com') Multiple rows of data can be inserted either by chaining the ``insert`` function or passing multiple tuples as args. .. code-block:: python customers = Table('customers') q = Query.into(customers).insert(1, 'Jane', 'Doe', 'jane@example.com').insert(2, 'John', 'Doe', 'john@example.com') .. code-block:: python customers = Table('customers') q = Query.into(customers).insert((1, 'Jane', 'Doe', 'jane@example.com'), (2, 'John', 'Doe', 'john@example.com')) Insert with constraint violation handling """"""""""""""""""""""""""""""""""""""""" MySQL ~~~~~ .. code-block:: python customers = Table('customers') q = MySQLQuery.into(customers) \ .insert(1, 'Jane', 'Doe', 'jane@example.com') \ .on_duplicate_key_ignore()) .. code-block:: sql INSERT INTO `customers` VALUES (1,'Jane','Doe','jane@example.com') ON DUPLICATE KEY IGNORE .. code-block:: python customers = Table('customers') q = MySQLQuery.into(customers) \ .insert(1, 'Jane', 'Doe', 'jane@example.com') \ .on_duplicate_key_update(customers.email, Values(customers.email)) .. code-block:: sql INSERT INTO `customers` VALUES (1,'Jane','Doe','jane@example.com') ON DUPLICATE KEY UPDATE `email`=VALUES(`email`) ``.on_duplicate_key_update`` works similar to ``.set`` for updating rows, additionally it provides the ``Values`` wrapper to update to the value specified in the ``INSERT`` clause. PostgreSQL ~~~~~~~~~~ .. code-block:: python customers = Table('customers') q = PostgreSQLQuery.into(customers) \ .insert(1, 'Jane', 'Doe', 'jane@example.com') \ .on_conflict(customers.email) \ .do_nothing() .. code-block:: sql INSERT INTO "customers" VALUES (1,'Jane','Doe','jane@example.com') ON CONFLICT ("email") DO NOTHING .. code-block:: python customers = Table('customers') q = PostgreSQLQuery.into(customers) \ .insert(1, 'Jane', 'Doe', 'jane@example.com') \ .on_conflict(customers.email) \ .do_update(customers.email, 'bob@example.com') .. code-block:: sql INSERT INTO "customers" VALUES (1,'Jane','Doe','jane@example.com') ON CONFLICT ("email") DO UPDATE SET "email"='bob@example.com' Insert from a SELECT Sub-query """""""""""""""""""""""""""""" .. code-block:: sql INSERT INTO "customers" VALUES (1,'Jane','Doe','jane@example.com'),(2,'John','Doe','john@example.com') To specify the columns and the order, use the ``columns`` function. .. code-block:: python customers = Table('customers') q = Query.into(customers).columns('id', 'fname', 'lname').insert(1, 'Jane', 'Doe') .. code-block:: sql INSERT INTO customers (id,fname,lname) VALUES (1,'Jane','Doe','jane@example.com') Inserting data with a query works the same as querying data with the additional call to the ``into`` method in the builder chain. .. code-block:: python customers, customers_backup = Tables('customers', 'customers_backup') q = Query.into(customers_backup).from_(customers).select('*') .. code-block:: sql INSERT INTO customers_backup SELECT * FROM customers .. code-block:: python customers, customers_backup = Tables('customers', 'customers_backup') q = Query.into(customers_backup).columns('id', 'fname', 'lname') .from_(customers).select(customers.id, customers.fname, customers.lname) .. code-block:: sql INSERT INTO customers_backup SELECT "id", "fname", "lname" FROM customers The syntax for joining tables is the same as when selecting data .. code-block:: python customers, orders, orders_backup = Tables('customers', 'orders', 'orders_backup') q = Query.into(orders_backup).columns('id', 'address', 'customer_fname', 'customer_lname') .from_(customers) .join(orders).on(orders.customer_id == customers.id) .select(orders.id, customers.fname, customers.lname) .. code-block:: sql INSERT INTO "orders_backup" ("id","address","customer_fname","customer_lname") SELECT "orders"."id","customers"."fname","customers"."lname" FROM "customers" JOIN "orders" ON "orders"."customer_id"="customers"."id" Updating Data ^^^^^^^^^^^^^^ PyPika allows update queries to be constructed with or without where clauses. .. code-block:: python customers = Table('customers') Query.update(customers).set(customers.last_login, '2017-01-01 10:00:00') Query.update(customers).set(customers.lname, 'smith').where(customers.id == 10) .. code-block:: sql UPDATE "customers" SET "last_login"='2017-01-01 10:00:00' UPDATE "customers" SET "lname"='smith' WHERE "id"=10 The syntax for joining tables is the same as when selecting data .. code-block:: python customers, profiles = Tables('customers', 'profiles') Query.update(customers) .join(profiles).on(profiles.customer_id == customers.id) .set(customers.lname, profiles.lname) .. code-block:: sql UPDATE "customers" JOIN "profiles" ON "profiles"."customer_id"="customers"."id" SET "customers"."lname"="profiles"."lname" Using ``pypika.Table`` alias to perform the update .. code-block:: python customers = Table('customers') customers.update() .set(customers.lname, 'smith') .where(customers.id == 10) .. code-block:: sql UPDATE "customers" SET "lname"='smith' WHERE "id"=10 Using ``limit`` for performing update .. code-block:: python customers = Table('customers') customers.update() .set(customers.lname, 'smith') .limit(2) .. code-block:: sql UPDATE "customers" SET "lname"='smith' LIMIT 2 Parametrized Queries ^^^^^^^^^^^^^^^^^^^^ PyPika allows you to use ``Parameter(str)`` term as a placeholder for parametrized queries. .. code-block:: python customers = Table('customers') q = Query.into(customers).columns('id', 'fname', 'lname') .insert(Parameter(':1'), Parameter(':2'), Parameter(':3')) .. code-block:: sql INSERT INTO customers (id,fname,lname) VALUES (:1,:2,:3) This allows you to build prepared statements, and/or avoid SQL-injection related risks. Due to the mix of syntax for parameters, depending on connector/driver, it is required that you specify the parameter token explicitly or use one of the specialized Parameter types per [PEP-0249](https://www.python.org/dev/peps/pep-0249/#paramstyle): ``QmarkParameter()``, ``NumericParameter(int)``, ``NamedParameter(str)``, ``FormatParameter()``, ``PyformatParameter(str)`` An example of some common SQL parameter styles used in Python drivers are: PostgreSQL: ``$number`` OR ``%s`` + ``:name`` (depending on driver) MySQL: ``%s`` SQLite: ``?`` Vertica: ``:name`` Oracle: ``:number`` + ``:name`` MSSQL: ``%(name)s`` OR ``:name`` + ``:number`` (depending on driver) You can find out what parameter style is needed for DBAPI compliant drivers here: https://www.python.org/dev/peps/pep-0249/#paramstyle or in the DB driver documentation. Temporal support ^^^^^^^^^^^^^^^^ Temporal criteria can be added to the tables. Select """""" Here is a select using system time. .. code-block:: python t = Table("abc") q = Query.from_(t.for_(SYSTEM_TIME.as_of('2020-01-01'))).select("*") This produces: .. code-block:: sql SELECT * FROM "abc" FOR SYSTEM_TIME AS OF '2020-01-01' You can also use between. .. code-block:: python t = Table("abc") q = Query.from_( t.for_(SYSTEM_TIME.between('2020-01-01', '2020-02-01')) ).select("*") This produces: .. code-block:: sql SELECT * FROM "abc" FOR SYSTEM_TIME BETWEEN '2020-01-01' AND '2020-02-01' You can also use a period range. .. code-block:: python t = Table("abc") q = Query.from_( t.for_(SYSTEM_TIME.from_to('2020-01-01', '2020-02-01')) ).select("*") This produces: .. code-block:: sql SELECT * FROM "abc" FOR SYSTEM_TIME FROM '2020-01-01' TO '2020-02-01' Finally you can select for all times: .. code-block:: python t = Table("abc") q = Query.from_(t.for_(SYSTEM_TIME.all_())).select("*") This produces: .. code-block:: sql SELECT * FROM "abc" FOR SYSTEM_TIME ALL A user defined period can also be used in the following manner. .. code-block:: python t = Table("abc") q = Query.from_( t.for_(t.valid_period.between('2020-01-01', '2020-02-01')) ).select("*") This produces: .. code-block:: sql SELECT * FROM "abc" FOR "valid_period" BETWEEN '2020-01-01' AND '2020-02-01' Joins """"" With joins, when the table object is used when specifying columns, it is important to use the table from which the temporal constraint was generated. This is because `Table("abc")` is not the same table as `Table("abc").for_(...)`. The following example demonstrates this. .. code-block:: python t0 = Table("abc").for_(SYSTEM_TIME.as_of('2020-01-01')) t1 = Table("efg").for_(SYSTEM_TIME.as_of('2020-01-01')) query = ( Query.from_(t0) .join(t1) .on(t0.foo == t1.bar) .select("*") ) This produces: .. code-block:: sql SELECT * FROM "abc" FOR SYSTEM_TIME AS OF '2020-01-01' JOIN "efg" FOR SYSTEM_TIME AS OF '2020-01-01' ON "abc"."foo"="efg"."bar" Update & Deletes """""""""""""""" An update can be written as follows: .. code-block:: python t = Table("abc") q = Query.update( t.for_portion( SYSTEM_TIME.from_to('2020-01-01', '2020-02-01') ) ).set("foo", "bar") This produces: .. code-block:: sql UPDATE "abc" FOR PORTION OF SYSTEM_TIME FROM '2020-01-01' TO '2020-02-01' SET "foo"='bar' Here is a delete: .. code-block:: python t = Table("abc") q = Query.from_( t.for_portion(t.valid_period.from_to('2020-01-01', '2020-02-01')) ).delete() This produces: .. code-block:: sql DELETE FROM "abc" FOR PORTION OF "valid_period" FROM '2020-01-01' TO '2020-02-01' Creating Tables ^^^^^^^^^^^^^^^ The entry point for creating tables is ``pypika.Query.create_table``, which is used with the class ``pypika.Column``. As with selecting data, first the table should be specified. This can be either a string or a `pypika.Table`. Then the columns, and constraints. Here's an example that demonstrates much of the functionality. .. code-block:: python stmt = Query \ .create_table("person") \ .columns( Column("id", "INT", nullable=False), Column("first_name", "VARCHAR(100)", nullable=False), Column("last_name", "VARCHAR(100)", nullable=False), Column("phone_number", "VARCHAR(20)", nullable=True), Column("status", "VARCHAR(20)", nullable=False, default=ValueWrapper("NEW")), Column("date_of_birth", "DATETIME")) \ .unique("last_name", "first_name") \ .primary_key("id") This produces: .. code-block:: sql CREATE TABLE "person" ( "id" INT NOT NULL, "first_name" VARCHAR(100) NOT NULL, "last_name" VARCHAR(100) NOT NULL, "phone_number" VARCHAR(20) NULL, "status" VARCHAR(20) NOT NULL DEFAULT 'NEW', "date_of_birth" DATETIME, UNIQUE ("last_name","first_name"), PRIMARY KEY ("id") ) There is also support for creating a table from a query. .. code-block:: python stmt = Query.create_table("names").as_select( Query.from_("person").select("last_name", "first_name") ) This produces: .. code-block:: sql CREATE TABLE "names" AS (SELECT "last_name","first_name" FROM "person") .. _tutorial_end: .. _license_start: License ------- Copyright 2020 KAYAK Germany, GmbH Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Crafted with ♥ in Berlin. .. _license_end: .. _appendix_start: .. |Brand| replace:: *PyPika* .. _appendix_end: .. _available_badges_start: .. |BuildStatus| image:: https://github.com/kayak/pypika/workflows/Unit%20Tests/badge.svg :target: https://github.com/kayak/pypika/actions .. |CoverageStatus| image:: https://coveralls.io/repos/kayak/pypika/badge.svg?branch=master :target: https://coveralls.io/github/kayak/pypika?branch=master .. |Codacy| image:: https://api.codacy.com/project/badge/Grade/6d7e44e5628b4839a23da0bd82eaafcf :target: https://www.codacy.com/app/twheys/pypika .. |Docs| image:: https://readthedocs.org/projects/pypika/badge/?version=latest :target: http://pypika.readthedocs.io/en/latest/ .. |PyPi| image:: https://img.shields.io/pypi/v/pypika.svg?style=flat :target: https://pypi.python.org/pypi/pypika .. |License| image:: https://img.shields.io/hexpm/l/plug.svg?maxAge=2592000 :target: http://www.apache.org/licenses/LICENSE-2.0 .. _available_badges_end:
Memory